Wu Jia-Yun, Zhang Jing-Yu, Xia Wen-Qi, Kang Yue-Ning, Liao Ru-Yi, Chen Yu-Ling, Li Xiao-Min, Wen Ya, Meng Fan-Xuan, Xu Li-Ling, Wen Sheng-Hui, Liu Hui-Fen, Li Yuan-Qing, Gu Jie-Ruo, Lv Qing, Ren Yong
Department of Rheumatology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
School of Automation Science and Engineering, South China University of Technology, Guangzhou, China.
Arthritis Res Ther. 2025 Jan 2;27(1):1. doi: 10.1186/s13075-024-03469-5.
Primary Sjogren's syndrome (pSS) and autoimmune thyroiditis (AIT) share overlapping genetic and immunological profiles. This retrospective study evaluates the efficacy of machine learning algorithms, with a focus on the Random Forest Classifier, to predict the presence of thyroid-specific autoantibodies (TPOAb and TgAb) in pSS patients.
A total of 96 patients with pSS were included in the retrospective study. All participants underwent a complete clinical and laboratory evaluation. All participants underwent thyroid function tests, including TPOAb and TgAb, and were accordingly divided into positive and negative thyroid autoantibody groups. Four machine learning algorithms were then used to analyze the risk factors affecting patients with pSS with positive and negative for thyroid autoantibodies.
The results indicated that the Random Forest Classifier algorithm (AUC = 0.755) outperformed the other three machine learning algorithms. The random forest classifier indicated Age, IgG, C4 and dry mouth were the main factors influencing the prediction of positive thyroid autoantibodies in pSS patients. It is feasible to predict AIT in pSS using machine learning algorithms.
Analyzing clinical and laboratory data from 96 pSS patients, the Random Forest model demonstrated superior performance (AUC = 0.755), identifying age, IgG levels, complement component 4 (C4), and absence of dry mouth as primary predictors. This approach offers a promising tool for early identification and management of AIT in pSS patients.
This retrospective study was approved and monitored by the Ethics Committee of The Third Affiliated Hospital of Sun Yat-sen University (No.II2023-254-02).
原发性干燥综合征(pSS)和自身免疫性甲状腺炎(AIT)具有重叠的遗传和免疫特征。这项回顾性研究评估了机器学习算法(重点是随机森林分类器)预测pSS患者甲状腺特异性自身抗体(TPOAb和TgAb)存在情况的效能。
共有96例pSS患者纳入这项回顾性研究。所有参与者均接受了全面的临床和实验室评估。所有参与者均进行了甲状腺功能检查,包括TPOAb和TgAb,并据此分为甲状腺自身抗体阳性组和阴性组。然后使用四种机器学习算法分析影响pSS患者甲状腺自身抗体阳性和阴性的危险因素。
结果表明,随机森林分类器算法(AUC = 0.755)优于其他三种机器学习算法。随机森林分类器表明年龄、IgG、C4和口干是影响pSS患者甲状腺自身抗体阳性预测的主要因素。使用机器学习算法预测pSS中的AIT是可行的。
通过分析96例pSS患者的临床和实验室数据,随机森林模型表现出卓越的性能(AUC = 0.755),确定年龄、IgG水平、补体成分4(C4)和无口干为主要预测因素。这种方法为pSS患者AIT的早期识别和管理提供了一个有前景的工具。
这项回顾性研究已获得中山大学附属第三医院伦理委员会的批准和监督(编号:II2023 - 254 - 02)。