Busch Kathrin, Murillo Francisco Javier, Lirette Camille, Wang Zeliang, Kenchington Ellen
Department of Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, NS B2Y 4A2, Canada.
ISME Commun. 2024 Nov 15;4(1):ycae142. doi: 10.1093/ismeco/ycae142. eCollection 2024 Jan.
Knowledge of spatial distribution patterns of biodiversity is key to evaluate and ensure ocean integrity and resilience. Especially for the deep ocean, where in situ monitoring requires sophisticated instruments and considerable financial investments, modeling approaches are crucial to move from scattered data points to predictive continuous maps. Those modeling approaches are commonly run on the macrobial level, but spatio-temporal predictions of host-associated microbiomes are not being targeted. This is especially problematic as previous research has highlighted that host-associated microbes may display distribution patterns that are not perfectly correlated not only with host biogeographies, but also with other factors, such as prevailing environmental conditions. We here establish a new simulation approach and present predicted spatio-temporal distribution patterns of deep-sea sponge and coral microbiomes, making use of a combination of environmental data, host data, and microbiome data. This approach allows predictions of microbiome spatio-temporal distribution patterns on scales that are currently not covered by classical sampling approaches at sea. In summary, our presented predictions allow (i) identification of microbial biodiversity hotspots in the past, present, and future, (ii) trait-based predictions to link microbial with macrobial biodiversity, and (iii) identification of shifts in microbial community composition (key taxa) across environmental gradients and shifting environmental conditions.
了解生物多样性的空间分布模式是评估和确保海洋完整性与恢复力的关键。特别是对于深海而言,现场监测需要精密仪器和大量资金投入,因此建模方法对于从分散的数据点转向预测性连续地图至关重要。这些建模方法通常在宏观生物层面运行,但尚未针对宿主相关微生物群落的时空预测。这尤其成问题,因为先前的研究强调,宿主相关微生物可能表现出不仅与宿主生物地理学不完全相关,而且与其他因素(如主要环境条件)也不完全相关的分布模式。我们在此建立了一种新的模拟方法,并利用环境数据、宿主数据和微生物群落数据的组合,呈现了深海海绵和珊瑚微生物群落的预测时空分布模式。这种方法能够在目前海洋经典采样方法未涵盖的尺度上预测微生物群落的时空分布模式。总之,我们给出的预测能够(i)识别过去、现在和未来的微生物生物多样性热点,(ii)基于特征的预测以将微生物与宏观生物多样性联系起来,以及(iii)识别跨环境梯度和变化环境条件下微生物群落组成(关键分类群)的变化。