Suppr超能文献

针对青少年的MINI-KID访谈:基于语料库对患有抑郁症的青少年进行语言分析以及使用ChatGPT继续开展研究的可能性

M.I.N.I.-KID interviews with adolescents: a corpus-based language analysis of adolescents with depressive disorders and the possibilities of continuation using Chat GPT.

作者信息

Jarvers Irina, Ecker Angelika, Donabauer Pia, Kampa Katharina, Weißenbacher Maximilian, Schleicher Daniel, Kandsperger Stephanie, Brunner Romuald, Ludwig Bernd

机构信息

Department of Child and Adolescent Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.

Department of Information Science, University of Regensburg, Regensburg, Germany.

出版信息

Front Psychiatry. 2024 Dec 19;15:1425820. doi: 10.3389/fpsyt.2024.1425820. eCollection 2024.

Abstract

BACKGROUND

Up to 13% of adolescents suffer from depressive disorders. Despite the high psychological burden, adolescents rarely decide to contact child and adolescent psychiatric services. To provide a low-barrier alternative, our long-term goal is to develop a chatbot for early identification of depressive symptoms. To test feasibility, we followed a two-step procedure, a) collection and linguistic analysis of psychiatric interviews with healthy adolescents and adolescents with depressive disorders and training of classifiers for detection of disorders from their answers in interviews, and b) generation of additional adolescent utterances via Chat GPT to improve the previously created model.

METHODS

For step a), we collected standardized interviews with 53 adolescents, = 40 with and = 13 without depressive disorders. The transcribed interviews comprised 4,077 question-answer-pairs, with which we predicted the clinical rating (depressive/non-depressive) with use of a feedforward neural network that received BERT (Bidirectional Encoder Representations from Transformers) vectors of interviewer questions and patient answers as input. For step b), we used the answers of all 53 interviews to instruct Chat GPT to generate new similar utterances.

RESULTS

In step a), the classifier based on BERT was able to discriminate answers by adolescents with and without depression with accuracies up to 97% and identified commonly used words and phrases. Evaluating the quality of utterances generated in step b), we found that prompt engineering for this task is difficult as Chat GPT performs poorly with long prompts and abstract descriptions of expectations on appropriate responses. The best approach was to cite original answers from the transcripts in order to optimally mimic the style of language used by patients and to find a practicable compromise between the length of prompts that Chat GPT can handle and the number of examples presented in order to minimize literal repetitions in Chat GPT's output.

CONCLUSION

The results indicate that identifying linguistic patterns in adolescents' transcribed verbal responses is promising and that Chat GPT can be leveraged to generate a large dataset of interviews. The main benefit is that without any loss of validity the synthetic data are significantly easier to obtain than interview transcripts.

摘要

背景

高达13%的青少年患有抑郁症。尽管心理负担沉重,但青少年很少决定联系儿童和青少年精神科服务机构。为了提供一种低门槛的替代方案,我们的长期目标是开发一种用于早期识别抑郁症状的聊天机器人。为了测试可行性,我们采用了两步程序,a)收集并对健康青少年和患有抑郁症的青少年的精神科访谈进行语言分析,并训练分类器以从访谈答案中检测疾病,b)通过Chat GPT生成额外的青少年话语以改进先前创建的模型。

方法

对于步骤a),我们收集了对53名青少年的标准化访谈,其中40名患有抑郁症,13名没有抑郁症。转录的访谈包含4077个问答对,我们使用前馈神经网络预测临床评级(抑郁/非抑郁),该网络以前馈神经网络接收访谈者问题和患者答案的BERT(来自Transformer的双向编码器表示)向量作为输入。对于步骤b),我们使用所有53次访谈的答案来指导Chat GPT生成新的类似话语。

结果

在步骤a)中,基于BERT的分类器能够以高达97%的准确率区分患有和未患有抑郁症的青少年的答案,并识别常用的单词和短语。在评估步骤b)中生成的话语质量时,我们发现针对此任务的提示工程很困难,因为Chat GPT在处理长提示和对适当回复的期望的抽象描述时表现不佳。最好的方法是引用转录本中的原始答案,以便最佳地模仿患者使用的语言风格,并在Chat GPT可以处理的提示长度和呈现的示例数量之间找到可行的折衷方案,以尽量减少Chat GPT输出中的文字重复。

结论

结果表明,在青少年转录的言语反应中识别语言模式是有前景的,并且可以利用Chat GPT生成大量访谈数据集。主要好处是,在不损失任何有效性的情况下,合成数据比访谈转录本更容易获得。

相似文献

3
Chat GPT for the management of obstructive sleep apnea: do we have a polar star?
Eur Arch Otorhinolaryngol. 2024 Apr;281(4):2087-2093. doi: 10.1007/s00405-023-08270-9. Epub 2023 Nov 19.
6
Exploring the potential of Chat-GPT as a supportive tool for sialendoscopy clinical decision making and patient information support.
Eur Arch Otorhinolaryngol. 2024 Apr;281(4):2081-2086. doi: 10.1007/s00405-023-08104-8. Epub 2023 Jul 5.
8
Fairness in AI-Driven Oncology: Investigating Racial and Gender Biases in Large Language Models.
Cureus. 2024 Sep 16;16(9):e69541. doi: 10.7759/cureus.69541. eCollection 2024 Sep.
10
Exploring the reversal curse and other deductive logical reasoning in BERT and GPT-based large language models.
Patterns (N Y). 2024 Jul 25;5(9):101030. doi: 10.1016/j.patter.2024.101030. eCollection 2024 Sep 13.

本文引用的文献

1
Linguistic markers for major depressive disorder: a cross-sectional study using an automated procedure.
Front Psychol. 2024 Mar 6;15:1355734. doi: 10.3389/fpsyg.2024.1355734. eCollection 2024.
2
Depression and anxiety have distinct and overlapping language patterns: Results from a clinical interview.
J Psychopathol Clin Sci. 2023 Nov;132(8):972-983. doi: 10.1037/abn0000850. Epub 2023 Jul 20.
3
Development of a chatbot for depression: adolescent perceptions and recommendations.
Child Adolesc Ment Health. 2023 Feb;28(1):124-127. doi: 10.1111/camh.12627. Epub 2022 Dec 11.
4
Machine Learning and Natural Language Processing in Mental Health: Systematic Review.
J Med Internet Res. 2021 May 4;23(5):e15708. doi: 10.2196/15708.
5
A Systematic review of the validity of screening depression through Facebook, Twitter, Instagram, and Snapchat.
J Affect Disord. 2021 May 1;286:360-369. doi: 10.1016/j.jad.2020.08.091. Epub 2021 Feb 8.
6
Prevalence and correlates of major depressive disorder: a systematic review.
Braz J Psychiatry. 2020 Nov-Dec;42(6):657-672. doi: 10.1590/1516-4446-2020-0650.
8
Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study.
J Psychiatr Res. 2020 Jul;126:134-140. doi: 10.1016/j.jpsychires.2019.08.002. Epub 2019 Aug 10.
9
Adolescent Depression: National Trends, Risk Factors, and Healthcare Disparities.
Am J Health Behav. 2019 Jan 1;43(1):181-194. doi: 10.5993/AJHB.43.1.15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验