Suppr超能文献

患者生成的健康数据在低位前切除术综合征管理中的应用:一项定性研究。

The use of patient-generated health data in the management of low anterior resection syndrome: a qualitative study.

作者信息

Monton Olivia, Smith Allister, Sabboobeh Sarah, Demian Marie, Cornish Julie, Wexner Steven D, Christensen Peter, Ghuman Amandeep, Bordeianou Liliana G, Keane Celia, Husain Syed, Gasior Alessandra, Leon Natalie, Savard Julie, Savitt Lieba R, Majgaard Margit, Sørensen Gitte Kjær, Mills Melanie, Rajabiyazdi Fateme, Boutros Marylise

机构信息

Department of Surgery, McMaster University, Hamilton, ON, Canada.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.

出版信息

Front Surg. 2024 Dec 19;11:1506688. doi: 10.3389/fsurg.2024.1506688. eCollection 2024.

Abstract

BACKGROUND

The cornerstone of low anterior resection syndrome (LARS) treatment is self-management, which requires patient engagement. Colorectal surgeons and nurses may use patient-generated health data (PGHD) to help guide patients in their use of self-management strategies for LARS. However, the perspectives of LARS experts on the use of PGHD remain largely unexplored. The objective of this study was to explore the perspectives and experiences of LARS experts regarding the use of PGHD in the management of LARS.

METHODS

We utilized purposive snowball sampling to identify international LARS experts, including surgeons, nurses, and LARS researchers with knowledge and expertise in LARS. We conducted individual semi-structured interviews with these experts between August 2022 and February 2024. We performed thematic analysis using the framework method to identify domains and associated themes.

RESULTS

Our sample included 16 LARS experts from five countries. Thematic analysis identified four domains and associated themes. The domains included: data collection practices, data review practices, perceived usefulness, and future directions. Within the data collection practices domain, we found that most experts asked LARS patients to collect some form of PGHD, including bowel diaries, patient-reported outcome measures, or both. Within the data review practices domain, we found that both surgeons and nurses reviewed PGHD. Most participants described finding it difficult to interpret the data and identified time constraints, legibility, and completeness as the most common barriers to reviewing data in clinic. In terms of perceived usefulness, data collection was felt to help clinicians understand symptoms and their impact and assist patients with self-management. The future directions domain revealed that most experts felt that a clinical tool in the form of an online app or website to support data collection and enhance data visualization would be useful. Finally, some participants saw promise in leveraging PGHD to inform the creation of automated treatment algorithms for LARS management.

CONCLUSIONS

This study highlights many gaps in the processes of patient-generated LARS data collection and review. A clinical tool including various data collection templates and data visualization prototypes could help to address these gaps. Future research will focus on incorporating the patient perspective.

摘要

背景

低位前切除综合征(LARS)治疗的基石是自我管理,这需要患者的参与。结直肠外科医生和护士可以利用患者生成的健康数据(PGHD)来帮助指导患者使用LARS的自我管理策略。然而,LARS专家对PGHD使用的观点在很大程度上仍未得到探索。本研究的目的是探讨LARS专家对在LARS管理中使用PGHD的观点和经验。

方法

我们采用目的抽样滚雪球法来确定国际LARS专家,包括在LARS方面有知识和专业技能的外科医生、护士和LARS研究人员。我们在2022年8月至2024年2月期间对这些专家进行了个人半结构化访谈。我们使用框架法进行主题分析,以确定领域和相关主题。

结果

我们的样本包括来自五个国家的16名LARS专家。主题分析确定了四个领域和相关主题。这些领域包括:数据收集实践、数据审查实践、感知有用性和未来方向。在数据收集实践领域,我们发现大多数专家要求LARS患者收集某种形式的PGHD,包括排便日记、患者报告的结局指标或两者都收集。在数据审查实践领域,我们发现外科医生和护士都会审查PGHD。大多数参与者表示难以解释数据,并将时间限制、易读性和完整性确定为在诊所审查数据时最常见的障碍。在感知有用性方面,数据收集被认为有助于临床医生了解症状及其影响,并协助患者进行自我管理。未来方向领域表明,大多数专家认为以在线应用程序或网站形式的临床工具来支持数据收集并增强数据可视化将是有用的。最后,一些参与者看到了利用PGHD为LARS管理创建自动化治疗算法提供信息的前景。

结论

本研究突出了患者生成的LARS数据收集和审查过程中的许多差距。一个包括各种数据收集模板和数据可视化原型的临床工具可能有助于弥补这些差距。未来的研究将侧重于纳入患者的观点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/948f/11693684/c1fac40ce374/fsurg-11-1506688-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验