Suppr超能文献

探索并验证一种用于预测膀胱癌患者预后及化疗反应的新型活性氧相关特征。

Exploration and validation of a novel reactive oxygen species-related signature for predicting the prognosis and chemotherapy response of patients with bladder cancer.

作者信息

Li Yulei, Zhang Lulu, Xu Gang, Xu Gang, Chen Jiajun, Zhao Keyuan, Li Mengyao, Jin Jing, Peng Chao, Wang Kaifang, Pan Shouhua, Zhu Ke

机构信息

Department of Urology, Shaoxing People's Hospital, Zhejiang, Shaoxing, China.

Medical Research Center, Shaoxing People's Hospital, Zhejiang, Shaoxing, China.

出版信息

Front Immunol. 2024 Dec 19;15:1493528. doi: 10.3389/fimmu.2024.1493528. eCollection 2024.

Abstract

BACKGROUND

Reactive Oxygen Species (ROS), a hallmark of cancer, is related to prognosis, tumor progression, and treatment response. Nevertheless, the correlation of ROS-based molecular signature with clinical outcome and immune cell infiltration has not been thoroughly studied in bladder cancer (BLCA). Accordingly, we aimed to thoroughly examine the role and prognostic value of ROS-related genes in BLCA.

METHODS

We obtained RNA sequencing and clinical data from The Cancer Genome Atlas (TCGA) for bladder cancer (BLCA) patients and identified ROS-associated genes using the GeneCards and Molecular Signatures Database (MSigDB). We then analyzed differential gene expression between BLCA and normal tissues and explored the functions of these ROS-related genes through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction (PPI) analysis. Prognostic ROS-related genes were identified using Univariate Cox regression (UCR) and LASSO analyses, which were further refined in a Multivariate Cox Regression (MCR) analysis to develop a Prognostic Signature (PS). This PS was validated in the GSE13507 cohort, assessing its predictive power with Kaplan-Meier survival and time-dependent ROC curves. To forecast BLCA outcomes, we constructed a nomogram integrating the PS with clinical variables. We also investigated the signature's molecular characteristics through Gene Set Enrichment Analysis (GSEA), Immune Cell Infiltration (ICI), and Tumor Mutational Burden (TMB) analyses. The Genomics of Drug Sensitivity in Cancer (GDSC) database was used to predict chemotherapy responses based on the PS. Additionally, we screened for Small-Molecule Drugs (SMDs) targeting ROS-related genes using the CMAP database. Finally, we validated our findings by checking protein levels of the signature genes in the Human Protein Atlas (HPA) and confirmed the role of Aldo-keto reductase family 1 member B1 (AKR1B1) through experiments.

RESULTS

The constructed and validated PS that comprised 17 ROS-related genes exhibited good performance in predicting overall survival (OS), constituting an independent prognostic biomarker in BLCA patients. Additionally, we successfully established a nomogram with superior predictive capacity, as indicated by the calibration plots. The bioinformatics analysis findings showcased the implication of PS in several oncogenic pathways besides tumor ICI regulation. The PS was negatively associated with the TMB. The high-risk group patients had greater chemotherapy sensitivity in comparison to low-risk group patients. Further, 11 candidate SMDs were identified for treating BLCA. The majority of gene expression exhibited a correlation with the protein expression. In addition, the expression of most genes was consistent with protein expression. Furthermore, to test the gene reliability we constructed, AKR1B1, one of the seventeen genes identified, was used for in-depth validation. experiments indicate that siRNA-mediated AKR1B1 silencing impeded BLCA cell viability, migration, and proliferation.

CONCLUSIONS

We identified a PS based on 17 ROS-related genes that represented independent OS prognostic factors and 11 candidate SMDs for BLCA treatment, which may contribute to the development of effective individualized therapies for BLCA.

摘要

背景

活性氧(ROS)是癌症的一个标志,与预后、肿瘤进展和治疗反应相关。然而,基于ROS的分子特征与膀胱癌(BLCA)临床结局和免疫细胞浸润的相关性尚未得到充分研究。因此,我们旨在全面研究ROS相关基因在BLCA中的作用和预后价值。

方法

我们从癌症基因组图谱(TCGA)获取了膀胱癌(BLCA)患者的RNA测序和临床数据,并使用基因卡片和分子特征数据库(MSigDB)鉴定了ROS相关基因。然后,我们分析了BLCA与正常组织之间的差异基因表达,并通过基因本体论(GO)、京都基因与基因组百科全书(KEGG)和蛋白质-蛋白质相互作用(PPI)分析探索了这些ROS相关基因的功能。使用单变量Cox回归(UCR)和LASSO分析鉴定预后ROS相关基因,并在多变量Cox回归(MCR)分析中进一步优化,以建立预后特征(PS)。该PS在GSE13507队列中得到验证,通过Kaplan-Meier生存曲线和时间依赖性ROC曲线评估其预测能力。为了预测BLCA结局,我们构建了一个将PS与临床变量相结合的列线图。我们还通过基因集富集分析(GSEA)、免疫细胞浸润(ICI)和肿瘤突变负担(TMB)分析研究了该特征的分子特征。利用癌症药物敏感性基因组学(GDSC)数据库基于PS预测化疗反应。此外,我们使用CMAP数据库筛选了靶向ROS相关基因的小分子药物(SMD)。最后,我们通过检查人类蛋白质图谱(HPA)中特征基因的蛋白质水平验证了我们的发现,并通过实验证实了醛糖酮还原酶家族1成员B1(AKR1B1)的作用。

结果

构建并验证的包含17个ROS相关基因的PS在预测总生存期(OS)方面表现良好,是BLCA患者的独立预后生物标志物。此外,我们成功建立了一个预测能力更强的列线图,校准图表明了这一点。生物信息学分析结果显示,PS除了在肿瘤ICI调节外,还在多种致癌途径中发挥作用。PS与TMB呈负相关。与低风险组患者相比,高风险组患者对化疗更敏感。此外,还鉴定出11种治疗BLCA的候选SMD。大多数基因表达与蛋白质表达相关。此外,大多数基因的表达与蛋白质表达一致。此外,为了测试我们构建的基因的可靠性,我们对鉴定出的17个基因之一AKR1B1进行了深入验证。实验表明,siRNA介导的AKR1B1沉默可抑制BLCA细胞活力、迁移和增殖。

结论

我们鉴定出一个基于17个ROS相关基因的PS,它代表独立的OS预后因素以及11种治疗BLCA的候选SMD,这可能有助于开发有效的BLCA个体化治疗方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d81d/11693660/e0a5ba39e811/fimmu-15-1493528-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验