Suppr超能文献

利用导电排列协同效应增强固态电池的阴极复合材料。

Enhancing cathode composites with conductive alignment synergy for solid-state batteries.

作者信息

Cao Zhang, Yao Xinxin, Park Soyeon, Deng Kaiyue, Zhang Chunyan, Chen Lei, Fu Kelvin

机构信息

Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.

Department of Mechanical Engineering, University of Michigan, Dearborn, MI 48128, USA.

出版信息

Sci Adv. 2025 Jan 3;11(1):eadr4292. doi: 10.1126/sciadv.adr4292.

Abstract

Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure. This design not only mitigates recrystallization of the polymer electrolyte but also establishes a densified local electric field distribution and accelerates the migration of lithium ions. The FAST electrode showcases outstanding electrochemical performance with lithium iron phosphate as the active material, achieving a high capacity of 148.2 milliampere hours per gram at 0.2 C over 100 cycles with substantial material loading (49.3 milligrams per square centimeter). This innovative electrode design marks a remarkable stride in addressing the challenges of solid-state lithium metal batteries.

摘要

增强阴极复合材料的传输和化学机械性能对于固态电池的性能至关重要。我们的研究引入了填料排列结构化厚电极(FAST电极),该电极显著提高了固体复合阴极的机械强度以及离子/电子传导率。FAST电极在离子导电聚合物电解质中纳入了垂直排列的纳米导电碳纳米管,形成了低曲折度的电子/离子传输路径,同时强化了电极结构。这种设计不仅减轻了聚合物电解质的再结晶现象,还建立了致密的局部电场分布并加速了锂离子的迁移。以磷酸铁锂作为活性材料时,FAST电极展现出卓越的电化学性能,在0.2 C的电流密度下经过100次循环,每克可实现148.2毫安时的高容量,且材料负载量可观(每平方厘米49.3毫克)。这种创新的电极设计在应对固态锂金属电池的挑战方面迈出了显著的一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/688b/11698086/b4c17189d006/sciadv.adr4292-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验