Lai Youbo, Zhang Tengteng, Huang Ling, Klymchenko Andrey S, Lin Weiying
Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, People's Republic of China.
Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2402348121. doi: 10.1073/pnas.2402348121. Epub 2025 Jan 3.
Monitoring subcellular organelle dynamics in real time and precisely assessing membrane heterogeneity in living cells are very important for studying fundamental biological mechanisms and gaining a comprehensive understanding of cellular processes. However, there remains a shortage of effective tools for these purposes. Herein, we propose a strategy to develop the exchangeable water-sensing probeAPBD for time-lapse imaging of dynamics in cellular membrane-bound organelle morphology with structured illumination microscopy at the nanoscale. In this work, our results reveal mitochondria as the first organelle to undergo morphological changes through swelling, fission, and fusion in cell necrosis, leading to the rupture of the endoplasmic reticulum (ER) sheet adhered to the mitochondria. Meanwhile, the ER tubules are then reconstructed by stretching and fusion of autophagosomes. Moreover, APBD allows us to directly visualize spatially resolved distribution of biomembranes vs. water inside single mammalian cells. Our findings show that the renal ischemia-reperfusion injury (IRI) model results in the increased biomembrane to cytoplasmic water ratio in the tissue. This reveals intracellular water heterogeneity between the nucleus and the cytoplasm during the IRI process. Overall, this study presents a strategy for development of the molecular tools for cellular water heterogeneity and organelle dynamics.
实时监测亚细胞器动态并精确评估活细胞中的膜异质性对于研究基本生物学机制和全面理解细胞过程非常重要。然而,目前仍缺乏用于这些目的的有效工具。在此,我们提出了一种策略,开发可交换的水敏探针APBD,用于在纳米尺度上通过结构光照显微镜对细胞膜结合细胞器形态的动态进行延时成像。在这项工作中,我们的结果表明,线粒体是细胞坏死过程中第一个通过肿胀、裂变和融合发生形态变化的细胞器,导致粘附在线粒体上的内质网(ER)片层破裂。同时,内质网小管随后通过自噬体的拉伸和融合进行重建。此外,APBD使我们能够直接可视化单个哺乳动物细胞内生物膜与水在空间上的分辨分布。我们的研究结果表明,肾缺血再灌注损伤(IRI)模型导致组织中生物膜与细胞质水的比例增加。这揭示了IRI过程中细胞核和细胞质之间的细胞内水异质性。总体而言,本研究提出了一种开发用于细胞水异质性和细胞器动态的分子工具的策略。