Suppr超能文献

优化虚拟随访护理:对乳腺癌和前列腺癌患者经历及观点的现实主义评价

Optimizing Virtual Follow-Up Care: Realist Evaluation of Experiences and Perspectives of Patients With Breast and Prostate Cancer.

作者信息

Scruton Sarah, Wong Geoff, Babinski Stephanie, Squires Lauren R, Berlin Alejandro, Easley Julie, McGee Sharon, Noel Ken, Rodin Danielle, Sussman Jonathan, Urquhart Robin, Bender Jacqueline L

机构信息

Cancer Rehabilitation and Survivorship, Department of Supportive Care, Princess Margaret Cancer Centre, Toronto, ON, Canada.

Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom.

出版信息

J Med Internet Res. 2025 Jan 3;27:e65148. doi: 10.2196/65148.

Abstract

BACKGROUND

Virtual follow-up (VFU) has the potential to enhance cancer survivorship care. However, a greater understanding is needed of how VFU can be optimized.

OBJECTIVE

This study aims to examine how, for whom, and in what contexts VFU works for cancer survivorship care.

METHODS

We conducted a realist evaluation of VFU among patients with breast cancer and prostate cancer at an urban cancer center during the COVID-19 pandemic. Realist evaluations examine how underlying causal processes of an intervention (mechanisms) in specific circumstances (contexts) interact to produce results (outcomes). Semistructured interviews were conducted with a purposive sample of patients ≤5 years after diagnosis. Interviews were audio-recorded and analyzed using a realist logic of analysis.

RESULTS

Participants (N=24; n=12, 50% with breast cancer and n=12, 50% with prostate cancer) had an average age of 59.6 (SD 10.7) years. Most participants (20/24, 83%) were satisfied with VFU and wanted VFU options to continue after the COVID-19 pandemic. However, VFU impacted patient perceptions of the quality of their care, particularly in terms of its effectiveness and patient centeredness. Whether VFU worked well for patients depended on patient factors (eg, needs, psychosocial well-being, and technological competence), care provider factors (eg, socioemotional behaviors and technological competence), and virtual care system factors (eg, modality, functionality, usability, virtual process of care, and communication workflows). Key mechanisms that interacted with contexts to produce positive outcomes (eg, satisfaction) were visual cues, effective and empathetic communication, and a trusting relationship with their provider.

CONCLUSIONS

Patients value VFU; however, VFU is not working as well as it could for patients. To optimize VFU, it is critical to consider contexts and mechanisms that impact patient perceptions of the patient centeredness and effectiveness of their care. Offering patients the choice of in-person, telephone, or video visits when possible, coupled with streamlined access to in-person care when required, is important. Prioritizing and addressing patient needs; enhancing physician virtual socioemotional behaviors and technology competency; and enhancing VFU functionality, usability, and processes of care and communication workflows will improve patient perceptions of the patient centeredness and effectiveness of virtual care.

摘要

背景

虚拟随访(VFU)有潜力提升癌症幸存者护理水平。然而,对于如何优化虚拟随访,我们还需要更深入的了解。

目的

本研究旨在探讨虚拟随访在癌症幸存者护理中对谁有效、在何种情况下有效以及如何发挥作用。

方法

在新冠疫情期间,我们对一家城市癌症中心的乳腺癌和前列腺癌患者的虚拟随访进行了实证评估。实证评估考察干预措施的潜在因果过程(机制)如何在特定情境中相互作用以产生结果(结局)。我们对诊断后≤5年的患者进行了有目的抽样,开展半结构化访谈。访谈进行了录音,并采用实证分析逻辑进行分析。

结果

参与者(N = 24;n = 12,50%为乳腺癌患者,n = 12,50%为前列腺癌患者)的平均年龄为59.6(标准差10.7)岁。大多数参与者(20/24,83%)对虚拟随访感到满意,并希望在新冠疫情后继续提供虚拟随访选项。然而,虚拟随访影响了患者对其护理质量的看法,特别是在有效性和以患者为中心方面。虚拟随访对患者是否有效取决于患者因素(如需求、心理社会幸福感和技术能力)、护理提供者因素(如社会情感行为和技术能力)以及虚拟护理系统因素(如方式、功能、可用性、虚拟护理流程和沟通工作流程)。与情境相互作用以产生积极结果(如满意度)的关键机制是视觉线索、有效且有同理心的沟通以及与提供者的信任关系。

结论

患者重视虚拟随访;然而,虚拟随访对患者的效果并未达到最佳。为了优化虚拟随访,关键是要考虑影响患者对护理的以患者为中心性和有效性认知的情境和机制。尽可能为患者提供面对面、电话或视频就诊的选择,并在需要时简化获得面对面护理的途径,这很重要。优先考虑并满足患者需求;增强医生的虚拟社会情感行为和技术能力;以及增强虚拟随访的功能、可用性、护理流程和沟通工作流程,将改善患者对虚拟护理的以患者为中心性和有效性的认知。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6322/11748426/50380690fcd4/jmir_v27i1e65148_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验