Suppr超能文献

SMAD3在泛癌中的多组学特征、免疫及预后潜力以及在肝癌中的验证

Multiomic characterization, immunological and prognostic potential of SMAD3 in pan-cancer and validation in LIHC.

作者信息

Zhou Tao, Zhang Dan Dan, Jin Jiejing, Xie Jinyang, Yu Jianhua, Zhu Chao, Wan Rong

机构信息

Jiangxi Key Laboratory of Molecular Medicine, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.

出版信息

Sci Rep. 2025 Jan 3;15(1):657. doi: 10.1038/s41598-024-84553-3.

Abstract

SMAD3, a protein-coding gene, assumes a pivotal role within the transforming growth factor-beta (TGF-β) signaling pathway. Notably, aberrant SMAD3 expression has been linked to various malignancies. Nevertheless, an extensive examination of the comprehensive pan-cancer impact on SMAD3's diagnostic, prognostic, and immunological predictive utility has yet to be undertaken. Bioinformatics methods were employed to systematically investigate the potential carcinogenic impact of SMAD3. We extensively harnessed data from authoritative sources, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), cBioPortal, Human Protein Atlas (HPA), UALCAN, and various other databases. Our study encompassed a comprehensive analysis of the following aspects: differential SMAD3 expression and its association with prognosis across diverse cancer types, gene mutations, immune cell infiltration, single-cell sequencing analysis, DNA methylation patterns, and drug sensitivity profiles. In vitro experiments were conducted with the primary objective of appraising both the expression profile and the precise functional attributes of SMAD3 within the milieu of Liver Hepatocellular Carcinoma (LIHC). Our findings revealed significant variations in SMAD3 expression between cancerous and adjacent normal tissues. High levels of SMAD3 expression were consistently associated with unfavorable prognoses across multiple cancer types,. Additionally, our analysis of SMAD3 methylation patterns in human cancers unveiled a favorable prognosis linked to elevated DNA methylation levels in pan-cancer. Furthermore, we identified positive associations between SMAD3 expression and RNAm6A methylation-related genes in the majority of cancers. Moreover, SMAD3 expression displayed substantial correlations with immune cell infiltration. Notably, immune checkpoint genes exhibited significant associations with SMAD3 expression across diverse cancers. Single-cell sequencing results elucidated the pan-cancer single-cell expression landscape of SMAD3. Within specific cancer subtypes, SMAD3 expression exhibited a noteworthy positive association with distinctive facets of malignancy. Finally, in our comprehensive analysis of drug sensitivity, we discerned a catalog of prospective therapeutic agents. In our comprehensive analysis across multiple cancer types, we observed a significant disparity in SMAD3 expression compared to normal tissues, and this findings suggest that SMAD3 holds promise as both a prognostic biomarker and a therapeutic target against various cancers. Difference displayed a noteworthy association with patient prognosis.

摘要

SMAD3是一种蛋白质编码基因,在转化生长因子-β(TGF-β)信号通路中起关键作用。值得注意的是,SMAD3表达异常与多种恶性肿瘤有关。然而,尚未对SMAD3在泛癌中的诊断、预后和免疫预测效用进行全面的综合研究。采用生物信息学方法系统研究SMAD3的潜在致癌作用。我们广泛利用了来自权威来源的数据,包括癌症基因组图谱(TCGA)、基因型-组织表达(GTEx)、cBioPortal、人类蛋白质图谱(HPA)、UALCAN以及其他各种数据库。我们的研究包括以下方面的综合分析:不同癌症类型中SMAD3的差异表达及其与预后的关联、基因突变、免疫细胞浸润、单细胞测序分析、DNA甲基化模式和药物敏感性概况。进行体外实验的主要目的是评估SMAD3在肝细胞癌(LIHC)环境中的表达谱和精确功能特性。我们的研究结果显示,癌组织和相邻正常组织之间的SMAD3表达存在显著差异。在多种癌症类型中,高水平的SMAD3表达始终与不良预后相关。此外,我们对人类癌症中SMAD3甲基化模式的分析表明,泛癌中DNA甲基化水平升高与良好预后相关。此外,我们发现大多数癌症中SMAD3表达与RNAm6A甲基化相关基因之间存在正相关。此外,SMAD3表达与免疫细胞浸润显示出显著相关性。值得注意的是,免疫检查点基因在不同癌症中与SMAD3表达存在显著关联。单细胞测序结果阐明了SMAD3的泛癌单细胞表达图谱。在特定癌症亚型中,SMAD3表达与恶性肿瘤的不同方面呈现出显著的正相关。最后,在我们对药物敏感性的综合分析中,我们识别出了一系列潜在的治疗药物。在我们对多种癌症类型的综合分析中,我们观察到SMAD3表达与正常组织相比存在显著差异,这一发现表明SMAD3有望成为各种癌症的预后生物标志物和治疗靶点。差异与患者预后显示出显著关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d526/11698864/480e990da39b/41598_2024_84553_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验