Qureshi Moiz, Ishaq Khushboo, Daniyal Muhammad, Iftikhar Hasnain, Rehman Mohd Ziaur, Salar S A Atif
Govt Degree College TangoJam, Hyderabad 70060, Sindh, Pakistan.
Department of Statistics, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
BMC Public Health. 2025 Jan 4;25(1):34. doi: 10.1186/s12889-024-21187-0.
Cardiovascular disease (CVD) is a leading cause of death and disability worldwide, and its incidence and prevalence are increasing in many countries. Modeling of CVD plays a crucial role in understanding the trend of CVD death cases, evaluating the effectiveness of interventions, and predicting future disease trends. This study aims to investigate the modeling and forecasting of CVD mortality, specifically in the Sindh province of Pakistan. The civil hospital in the Nawabshah area of Sindh province, Pakistan, provided the data set used in this study. It is a time series dataset with actual cardiovascular disease (CVD) mortality cases from 1999 to 2021 included. This study analyzes and forecasts the CVD deaths in the Sindh province of Pakistan using classical time series models, including Naïve, Holt-Winters, and Simple Exponential Smoothing (SES), which have been adopted and compared with a machine learning approach called the Artificial Neural Network Auto-Regressive (ANNAR) model. The performance of both the classical time series models and the ANNAR model has been evaluated using key performance indicators such as Root Mean Square Deviation Error, Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). After comparing the results, it was found that the ANNAR model outperformed all the selected models, demonstrating its effectiveness in predicting CVD mortality and quantifying future disease burden in the Sindh province of Pakistan. The study concludes that the ANNAR model is the best-selected model among the competing models for predicting CVD mortality in the Sindh province. This model provides valuable insights into the impact of interventions aimed at reducing CVD and can assist in formulating health policies and allocating economic resources. By accurately forecasting CVD mortality, policymakers can make informed decisions to address this public health issue effectively.
心血管疾病(CVD)是全球死亡和残疾的主要原因,在许多国家其发病率和患病率都在上升。心血管疾病建模在了解心血管疾病死亡病例趋势、评估干预措施有效性以及预测未来疾病趋势方面起着至关重要的作用。本研究旨在调查心血管疾病死亡率的建模和预测,特别是在巴基斯坦的信德省。巴基斯坦信德省瑙沃布沙阿地区的民事医院提供了本研究中使用的数据集。这是一个时间序列数据集,包含1999年至2021年实际心血管疾病(CVD)死亡病例。本研究使用经典时间序列模型分析和预测巴基斯坦信德省的心血管疾病死亡情况,这些模型包括朴素模型、霍尔特 - 温特斯模型和简单指数平滑(SES)模型,并与一种名为人工神经网络自回归(ANNAR)模型的机器学习方法进行了比较和采用。已使用诸如均方根偏差误差、平均绝对误差(MAE)和平均绝对百分比误差(MAPE)等关键性能指标评估了经典时间序列模型和ANNAR模型的性能。比较结果后发现,ANNAR模型优于所有选定模型,证明了其在预测巴基斯坦信德省心血管疾病死亡率和量化未来疾病负担方面的有效性。该研究得出结论,ANNAR模型是预测信德省心血管疾病死亡率的竞争模型中最佳选择的模型。该模型为旨在降低心血管疾病的干预措施的影响提供了有价值的见解,并有助于制定卫生政策和分配经济资源。通过准确预测心血管疾病死亡率,政策制定者可以做出明智的决策,以有效解决这一公共卫生问题。