Suppr超能文献

使用随机模型对猴痘病例进行建模与预测

Modeling and Forecasting Monkeypox Cases Using Stochastic Models.

作者信息

Qureshi Moiz, Khan Shahid, Bantan Rashad A R, Daniyal Muhammad, Elgarhy Mohammed, Marzo Roy Rillera, Lin Yulan

机构信息

Department of Statistics, Shaheed Benazir Bhutto University, Nawabshah 67450, Pakistan.

Department of Mathematics, National University of Modern Languages, Islamabad 44000, Pakistan.

出版信息

J Clin Med. 2022 Nov 4;11(21):6555. doi: 10.3390/jcm11216555.

Abstract

BACKGROUND

Monkeypox virus is gaining attention due to its severity and spread among people. This study sheds light on the modeling and forecasting of new monkeypox cases. Knowledge about the future situation of the virus using a more accurate time series and stochastic models is required for future actions and plans to cope with the challenge.

METHODS

We conduct a side-by-side comparison of the machine learning approach with the traditional time series model. The multilayer perceptron model (MLP), a machine learning technique, and the Box-Jenkins methodology, also known as the ARIMA model, are used for classical modeling. Both methods are applied to the Monkeypox cumulative data set and compared using different model selection criteria such as root mean square error, mean square error, mean absolute error, and mean absolute percentage error.

RESULTS

With a root mean square error of 150.78, the monkeypox series follows the ARIMA (7,1,7) model among the other potential models. Comparatively, we use the multilayer perceptron (MLP) model, which employs the sigmoid activation function and has a different number of hidden neurons in a single hidden layer. The root mean square error of the MLP model, which uses a single input and ten hidden neurons, is 54.40, significantly lower than that of the ARIMA model. The actual confirmed cases versus estimated or fitted plots also demonstrate that the multilayer perceptron model has a better fit for the monkeypox data than the ARIMA model.

CONCLUSIONS AND RECOMMENDATION

When it comes to predicting monkeypox, the machine learning method outperforms the traditional time series. A better match can be achieved in future studies by applying the extreme learning machine model (ELM), support vector machine (SVM), and some other methods with various activation functions. It is thus concluded that the selected data provide a real picture of the virus. If the situations remain the same, governments and other stockholders should ensure the follow-up of Standard Operating Procedures (SOPs) among the masses, as the trends will continue rising in the upcoming 10 days. However, governments should take some serious interventions to cope with the virus.

LIMITATION

In the ARIMA models selected for forecasting, we did not incorporate the effect of covariates such as the effect of net migration of monkeypox virus patients, government interventions, etc.

摘要

背景

猴痘病毒因其严重性及在人群中的传播而受到关注。本研究揭示了猴痘新发病例的建模与预测情况。未来应对这一挑战的行动和计划需要借助更精确的时间序列和随机模型了解该病毒的未来态势。

方法

我们对机器学习方法与传统时间序列模型进行了并行比较。使用了一种机器学习技术——多层感知器模型(MLP)以及也被称为自回归积分滑动平均模型(ARIMA)的博克斯 - 詹金斯方法进行经典建模。两种方法都应用于猴痘累积数据集,并使用不同的模型选择标准进行比较,如均方根误差、均方误差、平均绝对误差和平均绝对百分比误差。

结果

在其他潜在模型中,猴痘序列遵循ARIMA(7,1,7)模型,其均方根误差为150.78。相比之下,我们使用多层感知器(MLP)模型,该模型采用sigmoid激活函数且在单个隐藏层中有不同数量的隐藏神经元。使用单个输入和十个隐藏神经元的MLP模型的均方根误差为54.40,显著低于ARIMA模型。实际确诊病例与估计或拟合图也表明,多层感知器模型比ARIMA模型更适合猴痘数据。

结论与建议

在预测猴痘方面,机器学习方法优于传统时间序列方法。未来研究中通过应用极限学习机模型(ELM)、支持向量机(SVM)以及其他具有各种激活函数的方法可实现更好的匹配。因此得出结论,所选数据真实反映了该病毒情况。如果情况保持不变,政府和其他利益相关者应确保民众遵循标准操作程序(SOPs),因为在未来10天内趋势将持续上升。然而,政府应采取一些严肃的干预措施来应对该病毒。

局限性

在选择用于预测的ARIMA模型中,我们未纳入协变量的影响,如猴痘病毒患者净迁移的影响、政府干预等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验