Suppr超能文献

单细胞空间蛋白质表达数据的分割感知概率表型分析

Segmentation aware probabilistic phenotyping of single-cell spatial protein expression data.

作者信息

Lee Yuju, Chen Edward L Y, Chan Darren C H, Dinesh Anuroopa, Afiuni-Zadeh Somaieh, Klamann Conor, Selega Alina, Mrkonjic Miralem, Jackson Hartland W, Campbell Kieran R

机构信息

Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada.

Department of Computer Science, University of Toronto, Toronto, ON, Canada.

出版信息

Nat Commun. 2025 Jan 4;16(1):389. doi: 10.1038/s41467-024-55214-w.

Abstract

Spatial protein expression technologies can map cellular content and organization by simultaneously quantifying the expression of >40 proteins at subcellular resolution within intact tissue sections and cell lines. However, necessary image segmentation to single cells is challenging and error prone, easily confounding the interpretation of cellular phenotypes and cell clusters. To address these limitations, we present STARLING, a probabilistic machine learning model designed to quantify cell populations from spatial protein expression data while accounting for segmentation errors. To evaluate performance, we develop a comprehensive benchmarking workflow by generating highly multiplexed imaging data of cell line pellet standards with controlled cell content and marker expression and additionally established a score to quantify the biological plausibility of discovered cellular phenotypes on patient-derived tissue sections. Moreover, we generate spatial expression data of the human tonsil-a densely packed tissue prone to segmentation errors-and demonstrate cellular states captured by STARLING identify known cell types not visible with other methods and enable quantification of intra- and inter- individual heterogeneity.

摘要

空间蛋白质表达技术可以通过在完整组织切片和细胞系中以亚细胞分辨率同时定量>40种蛋白质的表达,来绘制细胞内容物和组织结构图。然而,对单细胞进行必要的图像分割具有挑战性且容易出错,很容易混淆对细胞表型和细胞簇的解释。为了解决这些局限性,我们提出了STARLING,这是一种概率机器学习模型,旨在从空间蛋白质表达数据中量化细胞群体,同时考虑分割误差。为了评估性能,我们通过生成具有可控细胞含量和标记物表达的细胞系沉淀标准的高度多重成像数据,开发了一个全面的基准测试工作流程,并另外建立了一个分数来量化在患者来源的组织切片上发现的细胞表型的生物学合理性。此外,我们生成了人类扁桃体的空间表达数据——一种容易出现分割错误的密集组织——并证明STARLING捕获的细胞状态能够识别其他方法不可见的已知细胞类型,并能够量化个体内和个体间的异质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18fd/11700195/fcc9cc907b6b/41467_2024_55214_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验