Suppr超能文献

通过脑电图导联特征优化和集成分类进行认知负荷检测

Cognitive load detection through EEG lead wise feature optimization and ensemble classification.

作者信息

Yedukondalu Jammisetty, Sunkara Kalyani, Radhika Vankayalapati, Kondaveeti Sivakrishna, Anumothu Murali, Murali Krishna Yadadavalli

机构信息

Department of ECE, QIS College of Engineering and Technology, Ongole, 523272, Andhra Pradesh, India.

School of Computer Science and Engineering, VIT-AP University, Amaravati, 522237, Andhra Pradesh, India.

出版信息

Sci Rep. 2025 Jan 4;15(1):842. doi: 10.1038/s41598-024-84429-6.

Abstract

Cognitive load stimulates neural activity, essential for understanding the brain's response to stress-inducing stimuli or mental strain. This study examines the feasibility of evaluating cognitive load by extracting, selection, and classifying features from electroencephalogram (EEG) signals. We employed robust local mean decomposition (R-LMD) to decompose EEG data from each channel, recorded over a four-second period, into five modes. The binary arithmetic optimization (BAO) algorithm employed to reduce the feature space and extract multi-domain features from modes, thereby optimizing classification performance. Using six optimized machine learning (ML) classifiers, we conducted an exhaustive study that encompassed both lead-wise and overall feature classification. We improved our method by combining R-LMD-based multi-domain features with BAO and optimized ensemble learning (OEL) classifiers. It was 97.4% accuracy (AC) at finding cognitive load in the MAT (mental arithmetic task) dataset and 96.1% AC at finding it in the STEW (simultaneous workload) dataset. In the same vein, this work introduces lead-wise cognitive load detection, which offers both temporal and spatial information regarding brain activity during cognitive tasks. We analyzed the 19 and 14 leads for the MAT and STEW, respectively. The F3 lead was notably noteworthy in its ability to analyze a variety of cognitive tasks, obtaining the maximum classification AC of 94.5% and 94%, respectively. Our approach (R-LMD+BAO+OEL) outperformed existing state-of-the-art techniques in cognitive load detection.

摘要

认知负荷会刺激神经活动,这对于理解大脑对应激刺激或精神压力的反应至关重要。本研究探讨了通过从脑电图(EEG)信号中提取、选择和分类特征来评估认知负荷的可行性。我们采用稳健局部均值分解(R-LMD)将每个通道在四秒时间段内记录的EEG数据分解为五种模式。采用二进制算术优化(BAO)算法来减少特征空间并从这些模式中提取多域特征,从而优化分类性能。使用六个优化的机器学习(ML)分类器,我们进行了一项详尽的研究,涵盖了导联-wise和整体特征分类。我们通过将基于R-LMD的多域特征与BAO和优化集成学习(OEL)分类器相结合来改进我们的方法。在MAT(心算任务)数据集中检测认知负荷时准确率为97.4%,在STEW(同时工作负荷)数据集中检测时准确率为96.1%。同样,这项工作引入了导联-wise认知负荷检测,它提供了认知任务期间大脑活动的时间和空间信息。我们分别分析了MAT和STEW的19个和14个导联。F3导联在分析各种认知任务的能力方面尤为显著,分别获得了94.5%和94%的最大分类准确率。我们的方法(R-LMD+BAO+OEL)在认知负荷检测方面优于现有的最先进技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aed7/11700217/5a7f132f0bc9/41598_2024_84429_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验