IEEE Trans Neural Syst Rehabil Eng. 2018 Nov;26(11):2106-2114. doi: 10.1109/TNSRE.2018.2872924. Epub 2018 Oct 1.
This paper describes an open access electroencephalography (EEG) data set for multitasking mental workload activity induced by a single-session simultaneous capacity (SIMKAP) experiment with 48 subjects. To validate the database, EEG spectral activity was evaluated with EEGLAB and the significant channels and activities for the experiment are highlighted. Classification performance was evaluated by training a support vector regression model on selected features from neighborhood component analysis based on a nine-point workload rating scale. With a reduced feature dimension, 69% classification accuracy was obtained for 3 identified workload levels from the rating scale with Cohen's kappa of 0.46. Accurate discrimination of mental workload is a desirable outcome in the field of operator performance analysis and BCI development; thus, we hope that our provided database and analyses can contribute to future investigations in this research field.
本文描述了一个开放获取的脑电图(EEG)数据集,该数据集用于由单次同时容量(SIMKAP)实验引起的多任务精神工作负荷活动,共有 48 名受试者。为了验证该数据库,使用 EEGLAB 评估了 EEG 频谱活动,并突出显示了实验的重要通道和活动。通过基于九点工作负荷评分量表的邻域成分分析,从选定特征训练支持向量回归模型,评估了分类性能。在降低特征维度的情况下,从评分量表中识别出 3 个工作负荷水平,获得了 69%的分类准确率,Cohen 的 kappa 值为 0.46。准确区分精神工作负荷是操作人员绩效分析和 BCI 开发领域的理想结果;因此,我们希望我们提供的数据库和分析能够为该研究领域的未来研究做出贡献。