Suppr超能文献

从反刍动物胃肠道微生物群中揭示新型抗菌肽:一种深度学习驱动的方法产生了一种抗耐甲氧西林金黄色葡萄球菌候选物。

Unveiling novel antimicrobial peptides from the ruminant gastrointestinal microbiomes: A deep learning-driven approach yields an anti-MRSA candidate.

作者信息

Shen Hong, Li Yanru, Pi Qingjie, Tian Junru, Xu Xianghan, Huang Zan, Huang Jinghu, Pian Cong, Mao Shengyong

机构信息

Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.

College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.

出版信息

J Adv Res. 2025 Jan 3. doi: 10.1016/j.jare.2025.01.005.

Abstract

INTRODUCTION

Antimicrobial peptides (AMPs) present a promising avenue to combat the growing threat of antibiotic resistance. The ruminant gastrointestinal microbiome serves as a unique ecosystem that offers untapped potential for AMP discovery.

OBJECTIVES

The aims of this study are to develop an effective methodology for the identification of novel AMPs from ruminant gastrointestinal microbiomes, followed by evaluating their antimicrobial efficacy and elucidating the mechanisms underlying their activity.

METHODS

We developed a deep learning-based model to identify AMP candidates from a dataset comprising 120 metagenomes and 10,373 metagenome-assembled genomes derived from the ruminant gastrointestinal tract. Both in vivo and in vitro experiments were performed to examine and validate the antimicrobial activities of the AMP candidates that were selected through bioinformatic analysis and subsequently synthesized chemically. Additionally, molecular dynamics simulations were conducted to explore the action mechanism of the most potent AMP candidate.

RESULTS

The deep learning model identified 27,192 potential secretory AMP candidates. Following bioinformatic analysis, 39 candidates were synthesized and tested. Remarkably, all synthesized peptides demonstrated antimicrobial activity against Staphylococcus aureus, with 79.5% showing effectiveness against multiple pathogens. Notably, Peptide 4, which exhibited the highest antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA), confirmed this effect in a mouse model with wound infection, exhibiting a low propensity for resistance development and minimal cytotoxicity and hemolysis towards mammalian cells. Molecular dynamics simulations provided insights into the mechanism of Peptide 4, primarily its ability to disrupt bacterial cell membranes, leading to cell death.

CONCLUSION

This study highlights the power of combining deep learning with microbiome research to uncover novel therapeutic candidates, paving the way for the development of next-generation antimicrobials like Peptide 4 to combat the growing threat of MRSA would infections. It also underscores the value of utilizing ruminant microbial resources.

摘要

引言

抗菌肽是应对日益严重的抗生素耐药性威胁的一条有前景的途径。反刍动物胃肠道微生物群是一个独特的生态系统,为抗菌肽的发现提供了尚未开发的潜力。

目的

本研究的目的是开发一种有效的方法,用于从反刍动物胃肠道微生物群中鉴定新型抗菌肽,随后评估其抗菌效果,并阐明其活性的潜在机制。

方法

我们开发了一种基于深度学习的模型,从一个包含120个宏基因组和10373个来自反刍动物胃肠道的宏基因组组装基因组的数据集中识别抗菌肽候选物。进行了体内和体外实验,以检测和验证通过生物信息学分析选择并随后化学合成的抗菌肽候选物的抗菌活性。此外,进行了分子动力学模拟,以探索最有效的抗菌肽候选物的作用机制。

结果

深度学习模型识别出27192个潜在的分泌性抗菌肽候选物。经过生物信息学分析后,合成并测试了39个候选物。值得注意的是,所有合成肽均对金黄色葡萄球菌表现出抗菌活性,79.5%的肽对多种病原体有效。值得注意的是,对耐甲氧西林金黄色葡萄球菌(MRSA)表现出最高抗菌活性的肽4,在伤口感染小鼠模型中证实了这种效果,显示出低耐药性发展倾向,对哺乳动物细胞的细胞毒性和溶血作用最小。分子动力学模拟提供了肽4作用机制的见解,主要是其破坏细菌细胞膜导致细胞死亡的能力。

结论

本研究强调了将深度学习与微生物组研究相结合以发现新型治疗候选物的力量,为开发像肽4这样的下一代抗菌药物以应对MRSA伤口感染日益严重的威胁铺平了道路。它还强调了利用反刍动物微生物资源的价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验