Suppr超能文献

基于二维头影测量X线片利用机器学习对头面部复合体进行长期预测建模

Long-Term Predictive Modelling of the Craniofacial Complex Using Machine Learning on 2D Cephalometric Radiographs.

作者信息

Myers Michael, Brown Michael D, Badirli Sarkhan, Eckert George J, Johnson Diane Helen-Marie, Turkkahraman Hakan

机构信息

Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA.

Indiana University School of Dentistry, Indianapolis, Indiana, USA.

出版信息

Int Dent J. 2025 Feb;75(1):236-247. doi: 10.1016/j.identj.2024.12.023. Epub 2025 Jan 5.

Abstract

OBJECTIVE

This study aimed to predict long-term growth-related changes in skeletal and dental relationships within the craniofacial complex using machine learning (ML) models.

MATERIALS AND METHODS

Cephalometric radiographs from 301 subjects, taken at pre-pubertal (T1, age 11) and post-pubertal stages (T2, age 18), were analysed. Three ML models-Lasso regression, Random Forest, and Support Vector Regression (SVR)-were trained on a subset of 240 subjects, while 61 subjects were used for testing. Model performance was evaluated using mean absolute error (MAE), intraclass correlation coefficients (ICCs), and clinical thresholds (2 mm or 2°).

RESULTS

MAEs for skeletal measurements ranged from 1.36° (maxilla to cranial base angle) to 4.12 mm (mandibular length), and for dental measurements from 1.26 mm (lower incisor position) to 5.40° (upper incisor inclination). ICCs indicated moderate to excellent agreement between actual and predicted values. The highest prediction accuracy within the 2 mm or 2° clinical thresholds was achieved for maxilla to cranial base angle (80%), lower incisor position (75%), and maxilla to mandible angle (70%). Pre-pubertal measurements and sex consistently emerged as the most important predictive factors.

CONCLUSIONS

ML models demonstrated the ability to predict post-pubertal values for maxilla to cranial base, mandible to cranial base, maxilla to mandible angles, upper and lower incisor positions, and upper face height with a clinically acceptable margin of 2 mm or 2°. Prediction accuracy was higher for skeletal relationships compared to dental relationships over the 8-year growth period. Pre-pubertal values of the measurements and sex emerged consistently as the most important predictors of the post-pubertal values.

摘要

目的

本研究旨在使用机器学习(ML)模型预测颅面复合体骨骼和牙齿关系中与长期生长相关的变化。

材料与方法

分析了301名受试者在青春期前(T1,11岁)和青春期后阶段(T2,18岁)拍摄的头影测量X线片。在240名受试者的子集上训练了三种ML模型——套索回归、随机森林和支持向量回归(SVR),而61名受试者用于测试。使用平均绝对误差(MAE)、组内相关系数(ICC)和临床阈值(2毫米或2°)评估模型性能。

结果

骨骼测量的MAE范围为1.36°(上颌骨与颅底角)至4.12毫米(下颌骨长度),牙齿测量的MAE范围为1.26毫米(下切牙位置)至5.40°(上切牙倾斜度)。ICC表明实际值与预测值之间具有中度至高度一致性。在上颌骨与颅底角(80%)、下切牙位置(75%)和上颌骨与下颌骨角(70%)的2毫米或2°临床阈值内,预测准确率最高。青春期前测量值和性别始终是最重要的预测因素。

结论

ML模型显示出能够预测青春期后上颌骨与颅底、下颌骨与颅底、上颌骨与下颌骨角、上下切牙位置以及上面部高度的值,临床可接受的误差范围为2毫米或2°。在8年的生长期间,骨骼关系的预测准确率高于牙齿关系。测量值的青春期前值和性别始终是青春期后值最重要的预测因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/303a/11806318/abb7d6b6b10d/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验