Suppr超能文献

基于正电子发射断层扫描(PET)的可解释性肿瘤及瘤周机器学习模型预测临床ⅠA期纯实性非小细胞肺癌无进展生存期:一项双中心研究

Explainable PET-Based Habitat and Peritumoral Machine Learning Model for Predicting Progression-free Survival in Clinical Stage IA Pure-Solid Non-small Cell Lung Cancer: A Two-center Study.

作者信息

Xue Bei-Hui, Chen Shuang-Li, Lan Jun-Ping, Wang Li-Li, Xie Jia-Geng, Zheng Xiang-Wu, Wang Liang-Xing, Tang Kun

机构信息

Division of Pulmonary Medicine, the First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Heart and Lung, Wenzhou, Zhejiang, China (B.H.X., J.P.L.); Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (B.H.X., S.L.C., J.G.X., X.W.Z.).

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China (B.H.X., S.L.C., J.G.X., X.W.Z.).

出版信息

Acad Radiol. 2025 Jun;32(6):3687-3698. doi: 10.1016/j.acra.2024.12.038. Epub 2025 Jan 4.

Abstract

RATIONALE AND OBJECTIVES

This study aimed to develop and validate machine learning (ML) models utilizing positron emission tomography (PET)-habitat of the tumor and its peritumoral microenvironment to predict progression-free survival (PFS) in patients with clinical stage IA pure-solid non-small cell lung cancer (NSCLC).

MATERIALS AND METHODS

234 Patients who underwent lung resection for NSCLC from two hospitals were reviewed. Radiomic features were extracted from both intratumoral, peritumoral and habitat regions on PET. Univariate and multivariate logistic regression analyses were employed to determine significant clinical variables. Subsequently, a radiomics nomogram was developed by combining the radiomics signature with these identified clinical variables. Kaplan-Meier (KM) analysis was performed to investigate the prognostic value of the nomogram. Shapley Additive Explanations (SHAP) were used to interpret the ML models.

RESULTS

The combination model which contained peritumoral 5 mm and habitat regions radiomics features, clinical variables obtained a strong well-performance, achieving area under the curve (AUC) of 0.905 (95% confidence interval (CI) 0.854-0.957) in the train set and 0.875 (95% CI 0.789-0.962) in the internal validation set. The radiomics signature was significantly associated with PFS, the model significantly discerned high and low-risk patients, and exhibited a significant benefit in the clinical use showed low-risk score given have far longer RFS than those with high-risk score (log-rank P<0.001).

CONCLUSION

The habitat and peritumoral radiomics signatures serve as an independent biomarker for predicting PFS in patients with early-stage NSCLC, effectively stratified survival risk among patients with clinical stage IA pure-solid non-small cell lung cancer.

摘要

原理与目的

本研究旨在开发并验证利用肿瘤及其瘤周微环境的正电子发射断层扫描(PET)特征的机器学习(ML)模型,以预测临床IA期纯实性非小细胞肺癌(NSCLC)患者的无进展生存期(PFS)。

材料与方法

回顾了两家医院因NSCLC接受肺切除术的234例患者。从PET上的瘤内、瘤周和特征区域提取放射组学特征。采用单因素和多因素逻辑回归分析来确定显著的临床变量。随后,通过将放射组学特征与这些确定的临床变量相结合,开发了放射组学列线图。进行Kaplan-Meier(KM)分析以研究列线图的预后价值。使用Shapley加性解释(SHAP)来解释ML模型。

结果

包含瘤周5mm和特征区域放射组学特征及临床变量的组合模型表现良好,在训练集中曲线下面积(AUC)为0.905(95%置信区间(CI)0.854-0.957),在内部验证集中为0.875(95%CI 0.789-0.962)。放射组学特征与PFS显著相关,该模型能显著区分高风险和低风险患者,且在临床应用中显示出显著益处,低风险评分患者的无进展生存期远长于高风险评分患者(对数秩检验P<0.001)。

结论

特征区域和瘤周放射组学特征可作为预测早期NSCLC患者PFS的独立生物标志物,有效分层临床IA期纯实性非小细胞肺癌患者的生存风险。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验