Jellicoe Matt, Yang Yibo, Stokes William, Simmons Matthew, Yang Lina, Foster Stephanie, Aslam Zabeada, Cohen Jennifer, Rashid Ashi, Nelson Andrew L, Kapur Nikil, Drummond-Brydson Rik, Chamberlain Thomas W
Institute of Process Research and Development, School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
Institute of Process Research & Development, School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
Small. 2025 Feb;21(6):e2403529. doi: 10.1002/smll.202403529. Epub 2025 Jan 5.
An adjustable and scalable method for the continuous flow synthesis of cupric oxide nanoparticles (CuO NPs), targetted the reduction of their activity to synthetic biomembranes to inform the fabrication of nanoparticles (NPs) with reduced toxicity for commercial applications. By manipulating key factors; temperature, residence time, and the ratio of precursor to reductant, precise control over the morphology of CuO NPs is achieved with X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirming the formation of needle-shaped CuO NPs. One-variable-at-a-time studies reveal a relationship between the synthesis conditions and the characteristics of the resultant NPs, with CuO NPs varying controllably between 10-50 nanometres in length and 4-10 nanometres in width. Subsequently, Design of Experiment (DoE) exploration of the biomembrane activity of the CuO NPs intriguingly revealed only minimal effects on their membrane-disruptive properties in the chemical space defined by the synthesis conditions explored. This study marks a significant milestone, as it introduces a facile, easy to scale, continuous flow synthesis of CuO NPs, with control over the length and width of the needle NPs and reveals that, regardless of the exact shape, the NPs have minimal impact on biomembranes, prompting more detailed exploration in the future for use in biomedical applications.
一种用于连续流动合成氧化铜纳米颗粒(CuO NPs)的可调节且可扩展的方法,旨在降低其对合成生物膜的活性,以指导制备具有降低毒性的纳米颗粒(NPs)用于商业应用。通过控制关键因素;温度、停留时间以及前驱体与还原剂的比例,利用X射线衍射(XRD)和透射电子显微镜(TEM)确认形成针状CuO NPs,从而实现对CuO NPs形态的精确控制。一次改变一个变量的研究揭示了合成条件与所得NPs特性之间的关系,CuO NPs的长度可在10 - 50纳米之间可控变化,宽度在4 - 10纳米之间。随后,对CuO NPs生物膜活性的实验设计(DoE)探索有趣地发现,在所探索的合成条件定义的化学空间中,它们对膜破坏特性的影响极小。这项研究标志着一个重要的里程碑,因为它引入了一种简便、易于扩展的连续流动合成CuO NPs的方法,能够控制针状NPs的长度和宽度,并表明无论确切形状如何,这些NPs对生物膜的影响极小,这促使未来在生物医学应用方面进行更详细的探索。