Suppr超能文献

结合多维注意力卷积的轻量级肺结节检测模型

Lightweight Lung-nodule Detection Model Combined with Multidimensional Attention Convolution.

作者信息

Huang He-He, Zhao Yuetao, Wei Sen-Yu, Zhao Chen, Shi Yu, Li Yuan, Huang Weijia, Yang Yifei, Xu Jianhua

机构信息

Ocean College, Jiangsu University of Science and Technology, Zhenjiang 212100, China.

Department of Respiratory Medicine, the Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.

出版信息

Curr Med Imaging. 2025;21:e15734056310722. doi: 10.2174/0115734056310722241210055412.

Abstract

BACKGROUND

Early and timely detection of pulmonary nodules and initiation treatment can substantially improve the survival rate of lung carcinoma. However, current detection methods based on convolutional neural networks (CNNs) cannot easily detect pulmonary nodules owing to low detection accuracy and the difficulty in detecting small-sized pulmonary nodules; meanwhile, more accurate CNN-based models are slow and require high hardware specifications.

OBJECTIVE

The aim of this study is to develop a detection model that achieves both high accuracy and real-time performance, ensuring effective and timely results.

METHODS

In this study, based on YOLOv5s, a concentrated-comprehensive convolution (C3_ODC) module with multidimensional attention is designed in the convolutional layer of the original backbone network for enhancing the feature-extraction capabilities of the model. Moreover, lightweight convolution is combined with weighted bidirectional feature pyramid networks (BiFPNs) to form a GS-BiFPN structure that enhances the fusion of multiscale features while reducing the number of model parameters. Finally, Focal Loss is combined with the normalized Wasserstein distance (NWD) to optimize the loss function. Focal loss focuses on carcinoma-positive samples to mitigate class imbalance, whereas the NWD enhances the detection performance of small lung nodules.

RESULTS

In comparison experiments against the YOLOv5s, the proposed model improved the average precision by 8.7% and reduced the number of parameters and floating-point operations by 5.4% and 8.2%, respectively, while achieving 116.7 frames per second.

CONCLUSION

The proposed model balances high detection accuracy against real-time requirements.

摘要

背景

早期及时检测肺结节并开始治疗可显著提高肺癌生存率。然而,当前基于卷积神经网络(CNN)的检测方法由于检测准确率低以及难以检测小尺寸肺结节,不易检测到肺结节;同时,基于CNN的更精确模型速度慢且需要高硬件规格。

目的

本研究旨在开发一种既能实现高精度又能具备实时性能的检测模型,确保结果有效且及时。

方法

在本研究中,基于YOLOv5s,在原始主干网络的卷积层中设计了具有多维注意力的集中综合卷积(C3_ODC)模块,以增强模型的特征提取能力。此外,将轻量级卷积与加权双向特征金字塔网络(BiFPN)相结合,形成GS-BiFPN结构,在减少模型参数数量的同时增强多尺度特征融合。最后,将焦点损失(Focal Loss)与归一化瓦瑟斯坦距离(NWD)相结合来优化损失函数。焦点损失聚焦于癌阳性样本以减轻类别不平衡,而NWD增强小肺结节的检测性能。

结果

在与YOLOv5s的对比实验中,所提出的模型平均精度提高了8.7%,参数数量和浮点运算分别减少了5.4%和8.2%,同时实现了每秒116.7帧。

结论

所提出的模型在高检测准确率与实时需求之间取得了平衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验