Liu Owen R, Kaplan Isaac C, Hernvann Pierre-Yves, Fulton Elizabeth A, Haltuch Melissa A, Harvey Chris J, Marshall Kristin N, Muhling Barbara, Norman Karma, Pozo Buil Mercedes, Rovellini Alberto, Samhouri Jameal F
Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA.
Ocean Associates, Inc., Under Contract to the Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Seattle, Washington, USA.
Glob Chang Biol. 2025 Jan;31(1):e70021. doi: 10.1111/gcb.70021.
Climate change can impact marine ecosystems through many biological and ecological processes. Ecosystem models are one tool that can be used to simulate how the complex impacts of climate change may manifest in a warming world. In this study, we used an end-to-end Atlantis ecosystem model to compare and contrast the effects of climate-driven species redistribution and projected temperature from three separate climate models on species of key commercial importance in the California Current Ecosystem. Adopting a scenario analysis approach, we used Atlantis to measure differences in the biomass, abundance, and weight at age of pelagic and demersal species among six simulations for the years 2013-2100 and tracked the implications of those changes for spatially defined California Current fishing fleets. The simulations varied in their use of forced climate-driven species distribution shifts, time-varying projections of ocean warming, or both. In general, the abundance and biomass of coastal pelagic species like Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) were more sensitive to projected climate change, while demersal groups like Dover sole (Microstomus pacificus) experienced smaller changes due to counteracting effects of spatial distribution change and metabolic effects of warming. Climate-driven species distribution shifts and the resulting changes in food web interactions were more influential than warming on end-of-century biomass and abundance patterns. Spatial projections of changes in fisheries catch did not always align with changes in abundance of their targeted species. This mismatch is likely due to species distribution shifts into or out of fishing areas and emphasizes the importance of a spatially explicit understanding of both climate change effects and fishing dynamics. We illuminate important biological and ecological pathways through which climate change acts in an ecosystem context and end with a discussion of potential management implications and future directions for climate change research using ecosystem models.
气候变化可通过许多生物和生态过程影响海洋生态系统。生态系统模型是一种可用于模拟气候变化的复杂影响在气候变暖的世界中如何显现的工具。在本研究中,我们使用了一个端到端的亚特兰蒂斯生态系统模型,来比较和对比气候驱动的物种重新分布以及来自三个不同气候模型的预计温度对加利福尼亚洋流生态系统中具有重要商业价值的关键物种的影响。采用情景分析方法,我们利用亚特兰蒂斯模型来衡量2013年至2100年六个模拟中浮游和底栖物种的生物量、丰度和年龄体重差异,并追踪这些变化对空间定义的加利福尼亚洋流捕鱼船队的影响。这些模拟在使用强制气候驱动的物种分布变化、海洋变暖的时变预测或两者兼用方面有所不同。一般来说,像太平洋沙丁鱼(Sardinops sagax)和北方凤尾鱼(Engraulis mordax)这样的沿海浮游物种的丰度和生物量对预计的气候变化更为敏感,而像太平洋庸鲽(Microstomus pacificus)这样的底栖群体由于空间分布变化的抵消作用和变暖的代谢效应,经历的变化较小。气候驱动的物种分布变化以及由此导致的食物网相互作用的变化,对世纪末生物量和丰度模式的影响比变暖更大。渔业捕捞量变化的空间预测并不总是与其目标物种丰度的变化一致。这种不匹配可能是由于物种分布移入或移出捕捞区域,强调了在空间上明确了解气候变化影响和捕捞动态的重要性。我们阐明了气候变化在生态系统背景下发挥作用的重要生物和生态途径,并最后讨论了使用生态系统模型的潜在管理意义和气候变化研究的未来方向。