Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Kraepelinstraße 2-10, 80804, Munich, Germany.
International Max Planck Research School for Translational Psychiatry, Munich, Germany.
Eur Arch Psychiatry Clin Neurosci. 2023 Feb;273(1):113-127. doi: 10.1007/s00406-022-01418-4. Epub 2022 May 19.
Improving response and remission rates in major depressive disorder (MDD) remains an important challenge. Matching patients to the treatment they will most likely respond to should be the ultimate goal. Even though numerous studies have investigated patient-specific indicators of treatment efficacy, no (bio)markers or empirical tests for use in clinical practice have resulted as of now. Therefore, clinical decisions regarding the treatment of MDD still have to be made on the basis of questionnaire- or interview-based assessments and general guidelines without the support of a (laboratory) test. We conducted a narrative review of current approaches to characterize and predict outcome to pharmacological treatments in MDD. We particularly focused on findings from newer computational studies using machine learning and on the resulting implementation into clinical decision support systems. The main issues seem to rest upon the unavailability of robust predictive variables and the lacking application of empirical findings and predictive models in clinical practice. We outline several challenges that need to be tackled on different stages of the translational process, from current concepts and definitions to generalizable prediction models and their successful implementation into digital support systems. By bridging the addressed gaps in translational psychiatric research, advances in data quantity and new technologies may enable the next steps toward precision psychiatry.
提高重度抑郁症(MDD)的反应率和缓解率仍然是一个重要的挑战。将患者与最有可能对其产生反应的治疗方法相匹配应该是最终目标。尽管许多研究都探讨了治疗效果的患者特异性指标,但迄今为止,尚未出现用于临床实践的(生物)标志物或经验性测试。因此,关于 MDD 治疗的临床决策仍然必须基于问卷调查或访谈评估以及一般指南做出,而无需实验室测试的支持。我们对当前描述和预测 MDD 药物治疗结果的方法进行了叙述性综述。我们特别关注使用机器学习的新计算研究的结果,并将其应用于临床决策支持系统。主要问题似乎在于缺乏强大的预测变量,以及缺乏实证研究和预测模型在临床实践中的应用。我们概述了在转化精神病学研究的不同阶段需要解决的几个挑战,从当前的概念和定义到可推广的预测模型及其成功应用于数字支持系统。通过弥合转化精神病学研究中的差距,数据数量的增加和新技术的进步可能会推动精准精神病学的下一步发展。