文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习从眼底自发荧光预测地图样萎缩的未来发展

Deep Learning to Predict the Future Growth of Geographic Atrophy from Fundus Autofluorescence.

作者信息

Salvi Anish, Cluceru Julia, Gao Simon S, Rabe Christina, Schiffman Courtney, Yang Qi, Lee Aaron Y, Keane Pearse A, Sadda Srinivas R, Holz Frank G, Ferrara Daniela, Anegondi Neha

机构信息

Genentech, Inc., South San Francisco, California.

Department of Ophthalmology, University of Washington, Seattle, Washington.

出版信息

Ophthalmol Sci. 2024 Oct 23;5(2):100635. doi: 10.1016/j.xops.2024.100635. eCollection 2025 Mar-Apr.


DOI:10.1016/j.xops.2024.100635
PMID:39758130
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11699103/
Abstract

PURPOSE: The region of growth (ROG) of geographic atrophy (GA) throughout the macular area has an impact on visual outcomes. Here, we developed multiple deep learning models to predict the 1-year ROG of GA lesions using fundus autofluorescence (FAF) images. DESIGN: In this retrospective analysis, 3 types of models were developed using FAF images collected 6 months after baseline to predict the GA lesion area (segmented lesion mask) at 1.5 years, FAF images collected at baseline and 6 months to predict the GA lesion at 1.5 years, and FAF images collected 6 months after baseline to predict the GA lesion at 1 and 1.5 years. The 1-year ROG from the 6-month visit was derived by taking the difference between the GA lesion area (segmented lesion mask) at the 1.5-year and 6-month visits. PARTICIPANTS: Patients enrolled in the following lampalizumab clinical trials and prospective observational studies: NCT02247479, NCT02247531, NCT02479386, and NCT02399072. METHODS: Datasets of study eyes from 597 patients were split into model training (310), validation (78), and test sets (209), stratified by baseline or initial lesion area, lesion growth rate, foveal involvement, and focality. Deep learning experiments were performed using the 2-dimensional U-Net; whole-lesion and multiclass models were developed. MAIN OUTCOME MEASURES: The performance of the models was evaluated by calculating the Dice score, coefficient of determination (R), and the squared Pearson correlation coefficient (r) between the true and derived GA lesion 1-year ROG. RESULTS: The model using baseline and 6-month FAF images to predict GA lesion enlargement at 1.5 years had the best performance for the derived 1-year ROG. Mean Dice scores were 0.73, 0.68, and 0.70 in the training, validation, and test sets, respectively. The R (0.77, 0.53, and 0.79) and r (0.83, 0.61, and 0.79) showed similar trends across the 3 sets. CONCLUSIONS: These findings show the potential of using baseline and/or 6-month visit FAF images to predict 1-year GA ROG using a deep learning approach. This work could potentially help support decision-making in clinical trials and more informed treatment decisions in clinical practice. FINANCIAL DISCLOSURES: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的:整个黄斑区地理性萎缩(GA)的生长区域(ROG)对视觉结果有影响。在此,我们开发了多个深度学习模型,以使用眼底自发荧光(FAF)图像预测GA病变的1年ROG。 设计:在这项回顾性分析中,使用基线后6个月收集的FAF图像开发了3种类型的模型,以预测1.5年时的GA病变面积(分割病变掩码);使用基线和6个月时收集的FAF图像预测1.5年时的GA病变;使用基线后6个月收集的FAF图像预测1年和1.5年时的GA病变。6个月随访时的1年ROG通过计算1.5年和6个月随访时GA病变面积(分割病变掩码)之间的差异得出。 参与者:纳入以下lampalizumab临床试验和前瞻性观察性研究的患者:NCT02247479、NCT02247531、NCT02479386和NCT02399072。 方法:将来自597例患者的研究眼数据集分为模型训练集(310例)、验证集(78例)和测试集(209例),按基线或初始病变面积、病变生长率、黄斑中心凹受累情况和病灶性进行分层。使用二维U-Net进行深度学习实验;开发了全病变和多类模型。 主要观察指标:通过计算真实和推导的GA病变1年ROG之间的Dice分数、决定系数(R)和皮尔逊相关系数平方(r)来评估模型的性能。 结果:使用基线和6个月FAF图像预测1.5年时GA病变扩大的模型在推导的1年ROG方面表现最佳。训练集、验证集和测试集的平均Dice分数分别为0.73、0.68和0.70。R(0.77、0.53和0.79)和r(0.83、0.61和0.79)在这3个数据集上呈现相似趋势。 结论:这些发现表明,使用深度学习方法,利用基线和/或6个月随访时的FAF图像预测1年GA ROG具有潜力。这项工作可能有助于支持临床试验中的决策制定以及临床实践中更明智的治疗决策。 财务披露:在本文末尾的脚注和披露中可能会发现专有或商业披露信息。

相似文献

[1]
Deep Learning to Predict the Future Growth of Geographic Atrophy from Fundus Autofluorescence.

Ophthalmol Sci. 2024-10-23

[2]
Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging.

Ophthalmol Retina. 2023-3

[3]
Visual Loss in Geographic Atrophy: Learnings from the Lampalizumab Trials.

Ophthalmology. 2025-4

[4]
Deep Learning-Based Prediction of Individual Geographic Atrophy Progression from a Single Baseline OCT.

Ophthalmol Sci. 2024-1-17

[5]
Comparison of Blue-Light Autofluorescence and Ultrawidefield Green-Light Autofluorescence for Assessing Geographic Atrophy.

Ophthalmol Retina. 2024-10

[6]
Geographic Atrophy Phenotypes in Subjects of Different Ethnicity: Asia-Pacific Ocular Imaging Society Work Group Report 3.

Ophthalmol Retina. 2023-7

[7]
Natural History of Geographic Atrophy Progression Secondary to Age-Related Macular Degeneration (Geographic Atrophy Progression Study).

Ophthalmology. 2015-11-3

[8]
Geographic Atrophy Segmentation Using Multimodal Deep Learning.

Transl Vis Sci Technol. 2023-7-3

[9]
Topographic Clinical Insights From Deep Learning-Based Geographic Atrophy Progression Prediction.

Transl Vis Sci Technol. 2024-8-1

[10]
Evaluation of Geographic Atrophy from Color Photographs and Fundus Autofluorescence Images: Age-Related Eye Disease Study 2 Report Number 11.

Ophthalmology. 2016-11

本文引用的文献

[1]
Deep Learning to Predict Geographic Atrophy Area and Growth Rate from Multimodal Imaging.

Ophthalmol Retina. 2023-3

[2]
Personalized Atrophy Risk Mapping in Age-Related Macular Degeneration.

Transl Vis Sci Technol. 2021-11-1

[3]
Geographic Atrophy Growth Is Strongly Related to Lesion Perimeter: Unifying Effects of Lesion Area, Number, and Circularity on Growth.

Ophthalmol Retina. 2021-9

[4]
An integrated time adaptive geographic atrophy prediction model for SD-OCT images.

Med Image Anal. 2021-2

[5]
Relationship of Topographic Distribution of Geographic Atrophy to Visual Acuity in Nonexudative Age-Related Macular Degeneration.

Ophthalmol Retina. 2021-8

[6]
OCT Angiography to Predict Geographic Atrophy Progression using Choriocapillaris Flow Void as a Biomarker.

Transl Vis Sci Technol. 2020-6-3

[7]
Natural History of Geographic Atrophy Secondary to Age-Related Macular Degeneration: Results from the Prospective Proxima A and B Clinical Trials.

Ophthalmology. 2019-12-14

[8]
Precursors and Development of Geographic Atrophy with Autofluorescence Imaging: Age-Related Eye Disease Study 2 Report Number 18.

Ophthalmol Retina. 2019-9

[9]
Efficacy and Safety of Lampalizumab for Geographic Atrophy Due to Age-Related Macular Degeneration: Chroma and Spectri Phase 3 Randomized Clinical Trials.

JAMA Ophthalmol. 2018-6-1

[10]
PROGNOSTIC VALUE OF SHAPE-DESCRIPTIVE FACTORS FOR THE PROGRESSION OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION.

Retina. 2019-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索