Suppr超能文献

使用BTR提取器增强土地特征分类:用于高精度分析航空激光扫描数据的新型软件包。

Enhancing land feature classification with the BTR Extractor: A novel software package for high-accuracy analysis of aerial laser scan data.

作者信息

Talebi Jamshid, Azizi Zahra

机构信息

Department of Remote Sensing and GIS, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

MethodsX. 2024 Dec 9;14:103090. doi: 10.1016/j.mex.2024.103090. eCollection 2025 Jun.

Abstract

The semi-automatic and automatic extraction of land features such as buildings, trees, and roads using aerial laser scan data is crucial in land use change studies and urban management. This research introduces the "BTR" extractor, a novel software package designed to enhance classification accuracy of phenomena identified in the super points obtained from aerial laser scanners. Our method focuses on:-Comparing classification methods using airborne laser scanning data.-Implementing supervised algorithms for high-accuracy classification.-Evaluating the performance against existing software like TerraSolid. The user-friendly interface allows data entry, training data collection, and selection of classification methods. We employed five methods (Bayesian algorithms, support vector machine, K-nearest neighbor, C-Tree, and discriminant analysis) to classify land features. Comparative results show the BTR extractor outperforms TerraSolid, particularly in supervised classification, demonstrating high accuracy and reliable implementation in the studied area. Our findings advocate for the use of supervised algorithms in classifying cloud data for enhanced accuracy and efficiency in remote sensing applications.

摘要

利用航空激光扫描数据半自动和自动提取建筑物、树木和道路等土地特征,在土地利用变化研究和城市管理中至关重要。本研究介绍了“BTR”提取器,这是一个新颖的软件包,旨在提高从航空激光扫描仪获得的超点中识别现象的分类精度。我们的方法侧重于:- 使用机载激光扫描数据比较分类方法。- 实施高精度分类的监督算法。- 针对像TerraSolid这样的现有软件评估性能。用户友好的界面允许进行数据输入、训练数据收集和分类方法选择。我们采用了五种方法(贝叶斯算法、支持向量机、K近邻、C树和判别分析)对土地特征进行分类。比较结果表明,BTR提取器优于TerraSolid,特别是在监督分类方面,在所研究区域展示了高精度和可靠的实施。我们的研究结果提倡在对云数据进行分类时使用监督算法,以提高遥感应用中的精度和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f95a/11699430/5be61efbff2e/ga1.jpg

相似文献

5
Comparison of Supervised Machine Learning Algorithms for Classifying of Home Discharge Possibility in Convalescent Stroke Patients: A Secondary Analysis.
J Stroke Cerebrovasc Dis. 2021 Oct;30(10):106011. doi: 10.1016/j.jstrokecerebrovasdis.2021.106011. Epub 2021 Jul 26.
6
Method for extraction of airborne LiDAR point cloud buildings based on segmentation.
PLoS One. 2020 May 29;15(5):e0232778. doi: 10.1371/journal.pone.0232778. eCollection 2020.
7
An AttSDNet model for multi-scale feature perception enhanced remote sensing classification of coastal salt-marsh wetlands.
Mar Environ Res. 2025 Feb;204:106899. doi: 10.1016/j.marenvres.2024.106899. Epub 2024 Dec 6.
8
Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
BMC Complement Altern Med. 2012 Aug 16;12:127. doi: 10.1186/1472-6882-12-127.

本文引用的文献

1
A comparison of random forests, boosting and support vector machines for genomic selection.
BMC Proc. 2011 May 27;5 Suppl 3(Suppl 3):S11. doi: 10.1186/1753-6561-5-S3-S11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验