Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
Faculty of Electrical Engineering, Urmia University of Technology, Urmia, Iran.
Sci Rep. 2022 Jul 11;12(1):11773. doi: 10.1038/s41598-022-15813-3.
Over the past few years, the processing of motor imagery (MI) electroencephalography (EEG) signals has been attracted for developing brain-computer interface (BCI) applications, since feature extraction and classification of these signals are extremely difficult due to the inherent complexity and tendency to artifact properties of them. The BCI systems can provide a direct interaction pathway/channel between the brain and a peripheral device, hence the MI EEG-based BCI systems seem crucial to control external devices for patients suffering from motor disabilities. The current study presents a semi-supervised model based on three-stage feature extraction and machine learning algorithms for MI EEG signal classification in order to improve the classification accuracy with smaller number of deep features for distinguishing right- and left-hand MI tasks. Stockwell transform is employed at the first phase of the proposed feature extraction method to generate two-dimensional time-frequency maps (TFMs) from one-dimensional EEG signals. Next, the convolutional neural network (CNN) is applied to find deep feature sets from TFMs. Then, the semi-supervised discriminant analysis (SDA) is utilized to minimize the number of descriptors. Finally, the performance of five classifiers, including support vector machine, discriminant analysis, k-nearest neighbor, decision tree, random forest, and the fusion of them are compared. The hyperparameters of SDA and mentioned classifiers are optimized by Bayesian optimization to maximize the accuracy. The presented model is validated using BCI competition II dataset III and BCI competition IV dataset 2b. The performance metrics of the proposed method indicate its efficiency for classifying MI EEG signals.
在过去的几年中,由于这些信号具有内在的复杂性和易受伪影影响的倾向,对运动想象 (MI) 脑电图 (EEG) 信号的处理一直吸引着脑机接口 (BCI) 应用的发展,因为这些信号的特征提取和分类非常困难。BCI 系统可以提供大脑和外围设备之间的直接交互途径/通道,因此基于 MI EEG 的 BCI 系统对于控制患有运动障碍的患者的外部设备似乎至关重要。本研究提出了一种基于三阶段特征提取和机器学习算法的半监督模型,用于 MI EEG 信号分类,以提高分类准确性,并使用较少的深度特征来区分右手和左手 MI 任务。在提出的特征提取方法的第一阶段采用斯托克韦尔变换将一维 EEG 信号生成二维时频图 (TFMs)。接下来,应用卷积神经网络 (CNN) 从 TFMs 中找到深度特征集。然后,利用半监督判别分析 (SDA) 来最小化描述符的数量。最后,比较了包括支持向量机、判别分析、k-最近邻、决策树、随机森林在内的五种分类器的性能,以及它们的融合。通过贝叶斯优化优化 SDA 和提到的分类器的超参数,以最大化准确性。该模型使用 BCI 竞赛 II 数据集 III 和 BCI 竞赛 IV 数据集 2b 进行验证。所提出方法的性能指标表明其对 MI EEG 信号分类的有效性。