Luo Yanchen, Fang Junfeng, Li Sihang, Liu Zhiyuan, Wu Jiancan, Zhang An, Du Wenjie, Wang Xiang
University of Science and Technology of China, Hefei, Anhui, China.
National University of Singapore, Singapore, Singapore.
iScience. 2024 Sep 19;27(11):110992. doi: 10.1016/j.isci.2024.110992. eCollection 2024 Nov 15.
The generation of molecules with targeted properties is crucial in biology, chemistry, and drug discovery. Current generative models are limited to using single property values as conditions, struggling with complex customizations described in detailed human language. To address this, we propose the text guidance instead, and introduce TextSMOG, a new via , which integrates language and diffusion models for text-guided small molecule generation. This method uses textual conditions to guide molecule generation, enhancing both stability and diversity. Experimental results show TextSMOG's proficiency in capturing and utilizing information from textual descriptions, making it a powerful tool for generating 3D molecular structures in response to complex textual customizations.
生成具有特定性质的分子在生物学、化学和药物发现中至关重要。当前的生成模型仅限于使用单一性质值作为条件,难以处理用详细自然语言描述的复杂定制。为了解决这个问题,我们提出了文本引导方法,并引入了TextSMOG,这是一种新的方法,它整合了语言模型和扩散模型用于文本引导的小分子生成。该方法使用文本条件来指导分子生成,提高了稳定性和多样性。实验结果表明TextSMOG在捕捉和利用文本描述中的信息方面表现出色,使其成为响应复杂文本定制生成3D分子结构的强大工具。