Suppr超能文献

基础人工智能模型与现代医学实践。

Foundational artificial intelligence models and modern medical practice.

作者信息

Medetalibeyoglu Alpay, Velichko Yury S, Hart Eric M, Bagci Ulas

机构信息

Machine and Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, IL 60611, United States.

Department of Radiology, Northwestern University, Chicago, IL 60611, United States.

出版信息

BJR Artif Intell. 2024 Dec 18;2(1):ubae018. doi: 10.1093/bjrai/ubae018. eCollection 2025 Jan.

Abstract

Our opinion piece pays homage to the evolution of medical practices, tracing back to the era of Hippocrates, through significant historical milestones, and drawing parallels with the principles underpinning foundational artificial intelligence (AI) models. It emphasizes the shared ethos of both domains: a commitment to comprehensive care that values diverse data integration and individualized patient treatment. The excitement surrounding foundation models in medical imaging is understandable. However, a critical and cautious approach is crucial before widespread adoption. By addressing the present 4 major limitations (ie, data bias and generalizability, interpretability of AI models, data scarcity and diversity, and computational resources and infrastructure) and fostering a culture of rigorous research, we can unlock the true potential of these models and revolutionize medical care. This critique (opinion) paper highlights the need for a more measured approach in the field of for medicine in general and for medical imaging in particular. It emphasizes the importance of tackling core challenges before rushing toward clinical applications. By focusing on robust methodologies and addressing limitations, researchers can ensure the development of truly impactful and trustworthy models for the betterment of healthcare.

摘要

我们的观点文章致敬医学实践的演变,追溯到希波克拉底时代,历经重大历史里程碑,并与支撑基础人工智能(AI)模型的原则进行对比。它强调了这两个领域共有的精神:致力于全面护理,重视多样的数据整合和个性化的患者治疗。医学成像领域对基础模型的兴奋之情是可以理解的。然而,在广泛采用之前,采取批判性和谨慎的方法至关重要。通过解决当前的4个主要局限性(即数据偏差和通用性、AI模型的可解释性、数据稀缺性和多样性以及计算资源和基础设施)并培育严谨的研究文化,我们能够释放这些模型的真正潜力并彻底改变医疗护理。这篇评论(观点)文章强调,在整个医学领域,尤其是医学成像领域,需要采取更为审慎的方法。它强调在急于推向临床应用之前应对核心挑战的重要性。通过专注于稳健的方法并解决局限性,研究人员能够确保开发出真正有影响力且值得信赖的模型,以改善医疗保健。

相似文献

1
Foundational artificial intelligence models and modern medical practice.基础人工智能模型与现代医学实践。
BJR Artif Intell. 2024 Dec 18;2(1):ubae018. doi: 10.1093/bjrai/ubae018. eCollection 2025 Jan.
3
Artificial intelligence to revolutionize IBD clinical trials: a comprehensive review.人工智能将彻底改变炎症性肠病临床试验:全面综述。
Therap Adv Gastroenterol. 2025 Feb 23;18:17562848251321915. doi: 10.1177/17562848251321915. eCollection 2025.
5
Artificial intelligence in hospital infection prevention: an integrative review.医院感染预防中的人工智能:一项综合综述。
Front Public Health. 2025 Apr 2;13:1547450. doi: 10.3389/fpubh.2025.1547450. eCollection 2025.

本文引用的文献

2
Foundation model for cancer imaging biomarkers.癌症成像生物标志物的基础模型。
Nat Mach Intell. 2024;6(3):354-367. doi: 10.1038/s42256-024-00807-9. Epub 2024 Mar 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验