Tzoumanekas Georgios, Chatzianastasis Michail, Ilias Loukas, Kiokes George, Psarras John, Askounis Dimitris
Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.
DaSciM, LIX, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
Front Artif Intell. 2024 Dec 20;7:1509179. doi: 10.3389/frai.2024.1509179. eCollection 2024.
Social media platforms, including X, Facebook, and Instagram, host millions of daily users, giving rise to bots automated programs disseminating misinformation and ideologies with tangible real-world consequences. While bot detection in platform X has been the area of many deep learning models with adequate results, most approaches neglect the graph structure of social media relationships and often rely on hand-engineered architectures. Our work introduces the implementation of a Neural Architecture Search (NAS) technique, namely Deep and Flexible Graph Neural Architecture Search (DFG-NAS), tailored to Relational Graph Convolutional Neural Networks (RGCNs) in the task of bot detection in platform X. Our model constructs a graph that incorporates both the user relationships and their metadata. Then, DFG-NAS is adapted to automatically search for the optimal configuration of Propagation and Transformation functions in the RGCNs. Our experiments are conducted on the TwiBot-20 dataset, constructing a graph with 229,580 nodes and 227,979 edges. We study the five architectures with the highest performance during the search and achieve an accuracy of 85.7%, surpassing state-of-the-art models. Our approach not only addresses the bot detection challenge but also advocates for the broader implementation of NAS models in neural network design automation.
包括X、Facebook和Instagram在内的社交媒体平台每天都有数百万用户,这导致了一些自动程序(即机器人程序)传播错误信息和意识形态,产生了切实的现实世界后果。虽然在平台X上检测机器人程序一直是许多深度学习模型关注的领域,并且取得了一定成果,但大多数方法都忽略了社交媒体关系的图结构,且常常依赖手工设计的架构。我们的工作介绍了一种神经架构搜索(NAS)技术的实现,即深度灵活图神经架构搜索(DFG-NAS),它是专门为在平台X上进行机器人程序检测任务的关系图卷积神经网络(RGCN)量身定制的。我们的模型构建了一个整合了用户关系及其元数据的图。然后,DFG-NAS被用于自动搜索RGCN中传播和转换函数的最优配置。我们的实验是在TwiBot-20数据集上进行的,构建了一个包含229,580个节点和227,979条边的图。我们研究了搜索过程中性能最高的五种架构,并实现了85.7%的准确率,超过了现有最先进的模型。我们的方法不仅解决了机器人程序检测的挑战,还倡导在神经网络设计自动化中更广泛地应用NAS模型。