Suppr超能文献

一种基于组学的肿瘤微环境研究方法及其前景。

An omics-based tumor microenvironment approach and its prospects.

作者信息

Nema Rajeev

机构信息

Department of Biosciences Manipal University Jaipur, Dehmi Kalan, Jaipur-Ajmer Expressway, Jaipur, Rajasthan, India.

出版信息

Rep Pract Oncol Radiother. 2024 Dec 4;29(5):649-650. doi: 10.5603/rpor.102823. eCollection 2024.

Abstract

Multi-omics approaches are revolutionizing cancer research and treatment by integrating single-modality omics methods, such as the transcriptome, genome, epigenome, epi-transcriptome, proteome, metabolome, and developing omics (single-cell omics). These technologies enable a deeper understanding of cancer and provide personalized treatment strategies. However, challenges such as standardization and appropriate methods for funneling complex information into clinical consequences remain. The tumor microenvironment (TME) is a complex system containing cancer cells, immune cells, stromal cells, and secreted molecules. To overcome these challenges, researchers can establish standardized protocols for data collection, analysis, and interpretation. Collaborations and data sharing among research groups and institutions can create a comprehensive and standardized multi-omics database, facilitating cross-validation and comparison of results. Multi-omics profiling enables in-depth characterization of diversified tumor types and better reveal their function in cancer immune escape. Datasets play a fundamental role in multi-omics approaches, with artificial intelligence and machine learning (AI) rapidly advancing in multi-omics for cancer.

摘要

多组学方法通过整合转录组、基因组、表观基因组、表观转录组、蛋白质组、代谢组等单模态组学方法以及发展中的组学(单细胞组学),正在革新癌症研究和治疗。这些技术能够更深入地了解癌症,并提供个性化的治疗策略。然而,诸如标准化以及将复杂信息转化为临床结果的适当方法等挑战仍然存在。肿瘤微环境(TME)是一个包含癌细胞、免疫细胞、基质细胞和分泌分子的复杂系统。为了克服这些挑战,研究人员可以建立数据收集、分析和解释的标准化方案。研究小组和机构之间的合作与数据共享可以创建一个全面且标准化的多组学数据库,便于结果的交叉验证和比较。多组学分析能够深入表征多样化的肿瘤类型,并更好地揭示它们在癌症免疫逃逸中的作用。数据集在多组学方法中起着基础性作用,人工智能和机器学习(AI)在癌症多组学领域正迅速发展。

相似文献

1
An omics-based tumor microenvironment approach and its prospects.一种基于组学的肿瘤微环境研究方法及其前景。
Rep Pract Oncol Radiother. 2024 Dec 4;29(5):649-650. doi: 10.5603/rpor.102823. eCollection 2024.
3
Applications of Single-Cell Omics to Dissect Tumor Microenvironment.单细胞组学在剖析肿瘤微环境中的应用
Front Genet. 2020 Nov 27;11:548719. doi: 10.3389/fgene.2020.548719. eCollection 2020.
4
The technological landscape and applications of single-cell multi-omics.单细胞多组学的技术领域和应用。
Nat Rev Mol Cell Biol. 2023 Oct;24(10):695-713. doi: 10.1038/s41580-023-00615-w. Epub 2023 Jun 6.
7
An overview of technologies for MS-based proteomics-centric multi-omics.基于 MS 的蛋白质组学中心型多组学技术概述。
Expert Rev Proteomics. 2022 Mar;19(3):165-181. doi: 10.1080/14789450.2022.2070476. Epub 2022 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验