Suppr超能文献

中性粒细胞与淋巴细胞比值及尿白蛋白肌酐比值作为2型糖尿病微血管并发症指标的横断面研究

Neutrophil-Lymphocyte Ratio and Urine Albumin-Creatinine Ratio As Indicators of Microvascular Complications in Type 2 Diabetes Mellitus: A Cross-Sectional Study.

作者信息

Upadhyayula Sai K, Ubaru Sharath, Raajeshwi P, Ajavindu C N, Rao Anirudh B

机构信息

Internal Medicine, Kempegowda Institute of Medical Sciences, Bengaluru, IND.

General Practice, Kempegowda Institute of Medical Sciences, Bengaluru, IND.

出版信息

Cureus. 2024 Dec 6;16(12):e75196. doi: 10.7759/cureus.75196. eCollection 2024 Dec.

Abstract

Background Type 2 diabetes mellitus (T2DM) is associated with a high risk of developing microvascular complications such as diabetic nephropathy, diabetic neuropathy (DN), and diabetic retinopathy (DR), leading to significant morbidity. Early detection of these complications is crucial for improving patient outcomes. Neutrophil-lymphocyte ratio (NLR) and urine albumin-creatinine ratio (UACR) show promise as cost-effective and accessible biomarkers for the early detection of microvascular complications in T2DM. Their integration into routine care could enhance risk stratification, facilitate timely interventions, and improve patient outcomes, reducing the burden of diabetes-related morbidity. However, their clinical utility in diabetic populations remains underexplored.  Objective The study aims to evaluate the predictive value of NLR and UACR for microvascular complications, specifically DN and DR, in patients with T2DM. Methods This cross-sectional study included 130 patients diagnosed with T2DM undergoing routine investigations at the Department of General Medicine, Kempegowda Institute of Medical Sciences, Bengaluru. NLR and UACR, along with other secondary variables were measured, and their associations with DN and DR were analysed using various statistical tests to assess the viability of these biomarkers in predicting microvascular complications in clinical practice. Results UACR emerged as a strong predictor for both DR and DN. UACR achieved an accuracy of 91% for DR (area under the curve (AUC) 0.97) and 81.5% for DN (AUC 0.90). NLR showed 85% accuracy for DR (AUC 0.87) and 75% accuracy for DN (AUC 0.851). However, NLR was not a significant predictor in multivariate analyses, suggesting that other variables may affect its predictive ability. Logistic regression analyses identified UACR, duration of diabetes, and glycosylated haemoglobin (HbA1C) as significant predictors of microvascular complications. The models had adjusted R² values of 0.751 for DN and 0.881 for DR. Conclusion The study highlights the predictive value of NLR and UACR in detecting microvascular complications, particularly DN and DR, in patients with T2DM. UACR demonstrated superior utility compared to NLR, underscoring its clinical relevance in early screening for complications. Additionally, glycaemic control and diabetes duration were significant predictors, emphasising the importance of comprehensive monitoring in preventing diabetic complications. Further research is warranted to explore the role of NLR in larger, more diverse populations.

摘要

背景

2型糖尿病(T2DM)与发生微血管并发症(如糖尿病肾病、糖尿病神经病变(DN)和糖尿病视网膜病变(DR))的高风险相关,会导致严重的发病率。早期发现这些并发症对于改善患者预后至关重要。中性粒细胞与淋巴细胞比值(NLR)和尿白蛋白肌酐比值(UACR)有望成为用于早期检测T2DM微血管并发症的经济有效且易于获取的生物标志物。将它们纳入常规护理可以加强风险分层,促进及时干预并改善患者预后,减轻糖尿病相关疾病的负担。然而,它们在糖尿病患者群体中的临床效用仍未得到充分探索。

目的

本研究旨在评估NLR和UACR对T2DM患者微血管并发症(特别是DN和DR)的预测价值。

方法

这项横断面研究纳入了130例在班加罗尔 Kempegowda 医学科学研究所普通内科接受常规检查的T2DM确诊患者。测量了NLR和UACR以及其他次要变量,并使用各种统计检验分析它们与DN和DR的关联,以评估这些生物标志物在临床实践中预测微血管并发症的可行性。

结果

UACR成为DR和DN的有力预测指标。UACR对DR的准确率达到91%(曲线下面积(AUC)为0.97),对DN的准确率为81.5%(AUC为0.90)。NLR对DR的准确率为85%(AUC为0.87),对DN的准确率为75%(AUC为0.851)。然而,在多变量分析中NLR不是一个显著的预测指标,这表明其他变量可能会影响其预测能力。逻辑回归分析确定UACR、糖尿病病程和糖化血红蛋白(HbA1C)是微血管并发症的显著预测指标。这些模型对DN的调整R²值为0.751,对DR的调整R²值为0.881。

结论

该研究突出了NLR和UACR在检测T2DM患者微血管并发症(特别是DN和DR)方面的预测价值。与NLR相比,UACR显示出更高的效用,强调了其在并发症早期筛查中的临床相关性。此外,血糖控制和糖尿病病程是显著的预测指标,强调了全面监测在预防糖尿病并发症中的重要性。有必要进行进一步研究以探索NLR在更大、更多样化人群中的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07b6/11700368/4a3a4f78903f/cureus-0016-00000075196-i01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验