Suppr超能文献

肝细胞癌自噬相关基因预后模型的构建与评估

Construction and evaluation of a prognostic model of autophagy-related genes in hepatocellular carcinoma.

作者信息

He Yutao, Du Bin, Liao Weiran, Wang Wei, Su Jifeng, Guo Chen, Zhang Kai, Shi Zhitian

机构信息

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China.

出版信息

Biochem Biophys Rep. 2024 Dec 12;41:101893. doi: 10.1016/j.bbrep.2024.101893. eCollection 2025 Mar.

Abstract

BACKGROUND

Hepatocellular carcinoma (HCC) is a globally prevalent disease. Our article evaluates risk models based on autophagy- and HCC-related genes and their prognostic value by bioinformatics analytical methods to provide a scientific basis for clinical treatment.

METHODS

Prognostic genes were identified by univariate and multivariate Cox analyses, and risk scores were calculated. The value of risk models was analysed by receiver operating characteristic curve (ROC), immune microenvironment and drug sensitivity. Prognostic gene-related regulatory mechanisms based on network database.

RESULTS

We screened four prognosis-related genes (SQSTM1, GABARAPL1, CDKN2A, HSPB8) for model construction. The AUC for 1-, 2- and 3-year survival was higher than 0.6 in both the training and validation sets. The nomogram constructed based on risk scores, pathologic_T predicted the outcome better. There were differences in the tumour microenvironment between the high and low risk groups, as evidenced by differences in the distribution of immune cells and differences in the expression of immune checkpoints.

CONCLUSION

Our results illustrate that models, nomograms and risk scores were valuable for tumour progression.

CLINICAL TRIAL NUMBER

Not applicable.

摘要

背景

肝细胞癌(HCC)是一种全球流行的疾病。我们的文章通过生物信息学分析方法评估基于自噬和HCC相关基因的风险模型及其预后价值,为临床治疗提供科学依据。

方法

通过单变量和多变量Cox分析确定预后基因,并计算风险评分。通过受试者工作特征曲线(ROC)、免疫微环境和药物敏感性分析风险模型的价值。基于网络数据库分析预后基因相关的调控机制。

结果

我们筛选了四个与预后相关的基因(SQSTM1、GABARAPL1、CDKN2A、HSPB8)用于模型构建。训练集和验证集中1年、2年和3年生存率的AUC均高于0.6。基于风险评分构建的列线图中,pathologic_T对预后的预测更好。高风险组和低风险组之间的肿瘤微环境存在差异,免疫细胞分布差异和免疫检查点表达差异证明了这一点。

结论

我们的结果表明,模型、列线图和风险评分对肿瘤进展具有重要价值。

临床试验编号

不适用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/502e/11700244/030eb577046c/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验