Suppr超能文献

青少年成长:饮食失调青少年体重相关风险和恢复指标的个性化评估

TeenGrowth: Individualized Estimations of Weight-Related Risk and Recovery Metrics for Young People With Eating Disorders.

作者信息

Schaumberg Katherine

机构信息

University of Wisconsin-Madison, University of Texas at Austin, Madison, Wisconsin, USA.

出版信息

Int J Eat Disord. 2025 Apr;58(4):658-668. doi: 10.1002/eat.24372. Epub 2025 Jan 6.

Abstract

OBJECTIVE

While weight restoration and/or stabilization is crucial for successful treatment and sustained recovery from restrictive eating disorders (EDs), it is often challenging to define an individual's expected healthy body weight. This paper introduces the TeenGrowth package and its web-based application, designed to calculate and forecast predicted body mass index (BMI) and weight across adolescence.

METHOD

TeenGrowth includes functions for data cleaning, predicted BMI z-score and BMI calculations, and growth forecasting. The accompanying Shiny web application provides a user-friendly interface, enabling the identification of predicted weights for individuals. Through a series of 30 computer-simulated datasets for 1100 individuals (1000 "healthy" and 100 "ED"), the package's options for predictive models are evaluated.

RESULTS

Simulation results highlight the potential for use in ED screening and treatment and guide users on modeling options. Prediction of adolescent BMI was more accurate for TeenGrowth models, specifically mean pre-ED BMIz, most recent pre-ED BMIz, or the combination of these metrics (median BMI error for these methods across all simulations = 0.69) when compared to predictions at the 50th percentile of population-based norms (median BMI error = 2.15). Aggregated across simulation approaches, results further support optimal accuracy in identifying ED cases when using mean, most recent, or mean + most recent methods (mean ED case classification accuracy = 0.86) as compared to the use of a population-based metric-85% of the 50th percentile BMI (mean classification accuracy = 0.61).

DISCUSSION

The introduction of TeenGrowth represents a first step towards setting reproducible, personalized predicted body weights for young people.

摘要

目的

虽然体重恢复和/或稳定对于限制性饮食失调(EDs)的成功治疗和持续康复至关重要,但确定个体的预期健康体重往往具有挑战性。本文介绍了TeenGrowth软件包及其基于网络的应用程序,旨在计算和预测青少年时期的预测体重指数(BMI)和体重。

方法

TeenGrowth包括数据清理、预测BMI z评分和BMI计算以及生长预测功能。随附的Shiny网络应用程序提供了一个用户友好的界面,能够识别个体的预测体重。通过针对1100个人(1000个“健康”个体和100个“饮食失调”个体)的一系列30个计算机模拟数据集,对该软件包的预测模型选项进行了评估。

结果

模拟结果突出了其在饮食失调筛查和治疗中的应用潜力,并为用户提供了建模选项指导。与基于人群规范第50百分位数的预测(中位数BMI误差 = 2.15)相比,TeenGrowth模型对青少年BMI的预测更为准确,特别是饮食失调前的平均BMI z评分、最近的饮食失调前BMI z评分或这些指标的组合(所有模拟中这些方法的中位数BMI误差 = 0.69)。综合各种模拟方法,结果进一步支持在使用平均、最近或平均 + 最近方法时,在识别饮食失调病例方面具有最佳准确性(平均饮食失调病例分类准确率 = 0.86),而使用基于人群的指标 - 第50百分位数BMI的85%(平均分类准确率 = 0.61)。

讨论

TeenGrowth的推出是朝着为年轻人设定可重复、个性化预测体重迈出的第一步。

相似文献

5
Calculation of expected body weight in adolescents with eating disorders.计算进食障碍青少年的预期体重。
Pediatrics. 2012 Feb;129(2):e438-46. doi: 10.1542/peds.2011-1676. Epub 2012 Jan 4.

本文引用的文献

6
Measuring BMI change among children and adolescents.测量儿童和青少年的 BMI 变化。
Pediatr Obes. 2022 Jun;17(6):e12889. doi: 10.1111/ijpo.12889. Epub 2022 Jan 22.
8
A new, developmentally-sensitive measure of weight suppression.一种新的、发展敏感的体重抑制测量方法。
Appetite. 2021 Aug 1;163:105231. doi: 10.1016/j.appet.2021.105231. Epub 2021 Mar 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验