Lee Charlotte E, Messer Lauren F, Wattiez Ruddy, Matallana-Surget Sabine
Division of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
Laboratory of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Mons, Belgium.
Proteomics. 2025 Apr;25(7):e202400208. doi: 10.1002/pmic.202400208. Epub 2025 Jan 6.
Marine plastispheres represent dynamic microhabitats where microorganisms colonise plastic debris and interact. Metaproteomics has provided novel insights into the metabolic processes within these communities; however, the early metabolic interactions driving the plastisphere formation remain unclear. This study utilised metaproteomic and metagenomic approaches to explore early plastisphere formation on low-density polyethylene (LDPE) over 3 (D3) and 7 (D7) days, focusing on microbial diversity, activity and biofilm development. In total, 2948 proteins were analysed, revealing dominant proteomes from Pseudomonas and Marinomonas, with near-complete metagenome-assembled genomes (MAGs). Pseudomonas dominated at D3, whilst at D7, Marinomonas, along with Acinetobacter, Vibrio and other genera became more prevalent. Pseudomonas and Marinomonas showed high expression of reactive oxygen species (ROS) suppression proteins, associated with oxidative stress regulation, whilst granule formation, and alternative carbon utilisation enzymes, also indicated nutrient limitations. Interestingly, 13 alkanes and other xenobiotic degradation enzymes were expressed by five genera. The expression of toxins, several type VI secretion system (TVISS) proteins, and biofilm formation proteins by Pseudomonas indicated their competitive advantage against other taxa. Upregulated metabolic pathways relating to substrate transport also suggested enhanced nutrient cross-feeding within the more diverse biofilm community. These insights enhance our understanding of plastisphere ecology and its potential for biotechnological applications.
海洋塑料球代表了动态的微生境,微生物在其中定殖于塑料碎片并相互作用。元蛋白质组学为这些群落中的代谢过程提供了新的见解;然而,驱动塑料球形成的早期代谢相互作用仍不清楚。本研究利用元蛋白质组学和宏基因组学方法,探索低密度聚乙烯(LDPE)上3天(D3)和7天(D7)内塑料球的早期形成,重点关注微生物多样性、活性和生物膜发育。总共分析了2948种蛋白质,揭示了来自假单胞菌属和海单胞菌属的优势蛋白质组,以及近乎完整的宏基因组组装基因组(MAGs)。假单胞菌属在D3时占主导地位,而在D7时,海单胞菌属以及不动杆菌属、弧菌属和其他属变得更为普遍。假单胞菌属和海单胞菌属显示出与氧化应激调节相关的活性氧(ROS)抑制蛋白的高表达,同时颗粒形成和替代碳利用酶也表明存在营养限制。有趣的是,五个属表达了13种烷烃和其他外源性降解酶。假单胞菌属毒素、几种VI型分泌系统(TVISS)蛋白和生物膜形成蛋白的表达表明它们相对于其他分类群具有竞争优势。与底物转运相关的上调代谢途径也表明在更多样化的生物膜群落中营养交叉喂养增强。这些见解加深了我们对塑料球生态学及其生物技术应用潜力的理解。