Ali Sameh Samir, Sun Jianzhong, Al-Tohamy Rania, Khalil Maha A, Elsamahy Tamer, Schagerl Michael, Zhu Daochen, El-Sapagh Shimaa
Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
Microorganisms. 2025 Aug 18;13(8):1929. doi: 10.3390/microorganisms13081929.
Pollution from synthetic polymers, particularly low-density polyethylene (LDPE), poses a significant environmental challenge due to its chemical stability and resistance to degradation. This study investigates an eco-biotechnological approach involving bacterial strains isolated from insect guts- LDPE-DB2 (from ) and LDPE-DB26 (from )-which demonstrate the ability to degrade LDPE, potentially through the action of lignin-modifying enzymes. These strains exhibited notable biofilm formation, enzymatic activity, and mechanical destabilization of LDPE. LDPE-DB2 exhibited higher LDPE degradation efficiency than LDPE-DB26, achieving a greater weight loss of 19.8% compared with 11.6% after 45 days. LDPE-DB2 also formed denser biofilms (maximum protein content: 68.3 ± 2.3 µg/cm) compared with LDPE-DB26 (55.2 ± 3.1 µg/cm), indicating stronger surface adhesion. Additionally, LDPE-DB2 reduced LDPE tensile strength (TS) by 58.3% (from 15.3 MPa to 6.4 ± 0.4 MPa), whereas LDPE-DB26 induced a 43.1% reduction (to 8.7 ± 0.23 MPa). Molecular weight analysis revealed that LDPE-DB2 caused a 14.8% decrease in weight-averaged molecular weight (Mw) and a 59.1% reduction in number-averaged molecular weight (Mn), compared with 5.8% and 32.7%, respectively, for LDPE-DB26. Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and gel permeation chromatography (GPC) analyses revealed substantial polymer chain scission and crystallinity disruption. Gas chromatography-mass spectrometry (GC-MS) identified environmentally benign degradation products, including alkanes, alcohols, and carboxylic acids. This study demonstrates a sustainable route to polyethylene biotransformation using insect symbionts and provides insights for scalable, green plastic waste management strategies in line with circular economy goals.
合成聚合物,特别是低密度聚乙烯(LDPE)造成的污染,因其化学稳定性和抗降解性而对环境构成重大挑战。本研究调查了一种生态生物技术方法,该方法涉及从昆虫肠道分离的细菌菌株——LDPE-DB2(来自 )和LDPE-DB26(来自 ),它们表现出降解LDPE的能力,可能是通过木质素修饰酶的作用。这些菌株表现出显著的生物膜形成、酶活性以及LDPE的机械失稳。LDPE-DB2表现出比LDPE-DB26更高的LDPE降解效率,45天后重量损失更大,分别为19.8%和11.6%。与LDPE-DB26(55.2±3.1μg/cm)相比,LDPE-DB2还形成了更致密的生物膜(最大蛋白质含量:68.3±2.3μg/cm),表明其表面附着力更强。此外,LDPE-DB2使LDPE的拉伸强度(TS)降低了58.3%(从15.3MPa降至6.4±0.4MPa),而LDPE-DB26导致降低了43.1%(降至8.7±0.23MPa)。分子量分析表明,与LDPE-DB26分别降低5.8%和32.7%相比,LDPE-DB2使重均分子量(Mw)降低了14.8%,数均分子量(Mn)降低了59.1%。傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)和凝胶渗透色谱(GPC)分析表明聚合物链发生了大量断裂且结晶度受到破坏。气相色谱-质谱联用(GC-MS)鉴定出环境友好的降解产物,包括烷烃、醇类和羧酸。本研究展示了一条利用昆虫共生体实现聚乙烯生物转化的可持续途径,并为符合循环经济目标的可扩展绿色塑料废物管理策略提供了见解。