Liu Peng, Nie Xin, Zhao Bing, Li Jiangan, Zhang Yisen, Wang Guibing, Chen Lei, He Hongwei, Wang Shuo, Liu Qingyuan, Ren Jinrui
Department of Neurosurgery, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Beijing Neurosurgical Institution, Capital Medical University, Beijing, China.
Transl Stroke Res. 2025 Jan 6. doi: 10.1007/s12975-024-01322-0.
Spontaneous intracranial artery dissection (sIAD) is the leading cause of stroke in young individuals. Identifying high-risk sIAD cases that exhibit symptoms and are likely to progress is crucial for treatment decision-making. This study aimed to develop a model relying on circulating biomarkers to discriminate symptomatic sIADs. The study prospectively collected sIAD tissues and corresponding serums from January 2020 to December 2022 as the discovery cohort. Symptomatic sIADs were defined as those with mass effect, hemorrhagic, or ischemic stroke. A stratification model was developed using the machine-learning algorithm within the derivation cohort (a cross-sectional cohort including from January 2018 to August 2022) and validated within the validation cohort (a longitudinal cohort including from January 2017 to April 2023). In the discovery cohort (n = 10, 5 symptomatic), analyses of tissues and serums revealed 15 proteins and 2 cytokines with significance between symptomatic and asymptomatic sIADs. Among these biomarkers, six proteins and one cytokine, participating in the immune response and inflammatory-related pathways, have a good consistency in expression level between sIAD tissues and serums. In the derivation cohort (n = 181, 77 symptomatic), a model incorporating these 7 biomarkers was highly discriminative of symptomatic sIADs (area under curve [AUC], 0.95). This model performed well in predicting the occurrence of sIAD-related symptoms in the validation cohort (n = 84, 26 symptomatic) with an AUC of 0.88. This study revealed seven circulating biomarkers of symptomatic sIAD and provided a high-accuracy model relying on these circulating biomarkers to identify symptomatic sIADs, which may aid in clinical decision-making for sIADs.
自发性颅内动脉夹层(sIAD)是年轻个体中风的主要原因。识别出有症状且可能进展的高危sIAD病例对于治疗决策至关重要。本研究旨在开发一种基于循环生物标志物的模型,以鉴别有症状的sIAD。该研究前瞻性收集了2020年1月至2022年12月的sIAD组织及相应血清作为发现队列。有症状的sIAD被定义为具有占位效应、出血性或缺血性中风的病例。在推导队列(一个包括2018年1月至2022年8月患者的横断面队列)中使用机器学习算法建立分层模型,并在验证队列(一个包括2017年1月至2023年4月患者的纵向队列)中进行验证。在发现队列(n = 10,5例有症状)中,对组织和血清的分析显示,有症状和无症状sIAD之间有15种蛋白质和2种细胞因子具有显著差异。在这些生物标志物中,参与免疫反应和炎症相关途径的6种蛋白质和1种细胞因子在sIAD组织和血清中的表达水平具有良好的一致性。在推导队列(n = 181,77例有症状)中,包含这7种生物标志物的模型对有症状的sIAD具有高度鉴别力(曲线下面积[AUC],0.95)。该模型在验证队列(n = 84,26例有症状)中预测sIAD相关症状的发生情况表现良好,AUC为0.88。本研究揭示了有症状sIAD的7种循环生物标志物,并提供了一种基于这些循环生物标志物的高精度模型来识别有症状的sIAD,这可能有助于sIAD的临床决策。