Suppr超能文献

一种从生命化学数据库中发现用于乳腺癌的选择性JAK1抑制剂的计算机模拟方法。

An In Silico Approach to Uncover Selective JAK1 Inhibitors for Breast Cancer from Life Chemicals Database.

作者信息

Sathish Sruthy, Sohn Honglae, Madhavan Thirumurthy

机构信息

Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.

Department of Chemistry and Department of Carbon Materials, Chosun University, Gwangju, South Korea.

出版信息

Appl Biochem Biotechnol. 2025 Apr;197(4):2508-2543. doi: 10.1007/s12010-024-05109-9. Epub 2025 Jan 6.

Abstract

JAK1, a key regulator of multiple oncogenic pathways, is a sought-out target, and its expression in immune cells and tumour-infiltrating lymphocytes (TILs) is associated with a favorable prognosis in breast cancer. JAK1 activates IL-6 via ERBB2 receptor tyrosine kinase signalling and promotes metastatic cancer and STAT3 activation in breast cancer cells. Hence, targeting JAK1 in breast cancer is being explored as a potential therapeutic strategy. A comprehensive in silico approach was utilised in this study to identify selective JAK1 inhibitors from the Life chemicals database. First, we utilised an anticancer focussed library and performed molecular docking to screen against JAK1 protein. The top 10 compounds from docking were taken for cross-docking, to assess the selectivity towards JAK1 target. Lipinski's RO5 was checked for eliminating the compounds that violate rules. Toxicity, biological activity and reactivity for the identified best compounds were predicted by Protox-II server, PASS server and cDFT analysis respectively. MD simulations were carried out to examine the stability and dynamic behaviour of the top leads, including the long-term stability of the ligand-receptor complex and any conformational changes. Lastly, the MM/PBSA method was used to determine the binding free energy of the protein-ligand complex. Our in silico approach has yielded a promising set of compounds F2638-0133, F3408-0020 and F5833-7435 with the potential to selectively target JAK1, a critical player in breast cancer progression. The docking, simulation and MM/PBSA results were compared with standard drug abrocitinib. Identified compounds exhibit favorable binding interactions, electronic properties and robust stability profiles compared to standard drug, making them promising leads for further experimental validation.

摘要

JAK1是多种致癌途径的关键调节因子,是一个备受关注的靶点,其在免疫细胞和肿瘤浸润淋巴细胞(TILs)中的表达与乳腺癌的良好预后相关。JAK1通过ERBB2受体酪氨酸激酶信号通路激活IL-6,并促进乳腺癌细胞的转移癌和STAT3激活。因此,针对乳腺癌中的JAK1进行靶向治疗正在作为一种潜在的治疗策略进行探索。本研究采用了一种全面的计算机模拟方法,从生命化学数据库中识别选择性JAK1抑制剂。首先,我们利用一个专注于抗癌的文库,并进行分子对接以针对JAK1蛋白进行筛选。对接得到的前10种化合物进行交叉对接,以评估对JAK1靶点的选择性。检查Lipinski的RO5以排除违反规则的化合物。分别通过Protox-II服务器、PASS服务器和cDFT分析预测所鉴定的最佳化合物的毒性、生物活性和反应性。进行分子动力学(MD)模拟以检查顶级先导物的稳定性和动态行为,包括配体-受体复合物的长期稳定性和任何构象变化。最后,使用MM/PBSA方法确定蛋白质-配体复合物的结合自由能。我们的计算机模拟方法产生了一组有前景的化合物F2638-0133、F3408-0020和F5833-7435,它们有可能选择性地靶向JAK1,而JAK1是乳腺癌进展中的关键因素。将对接、模拟和MM/PBSA结果与标准药物阿布罗替尼进行比较。与标准药物相比,所鉴定的化合物表现出有利的结合相互作用、电子性质和强大的稳定性特征,使其成为进一步实验验证的有前景的先导物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验