Yan Shuai, Peng Chen, Yang Chao, Chen Yangshen, Zhang Junbo, Guan Anxiang, Lv Ximeng, Wang Haozhen, Wang Zhiqiang, Sham Tsun-Kong, Han Qing, Zheng Gengfeng
Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China.
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Angew Chem Int Ed Engl. 2021 Dec 1;60(49):25741-25745. doi: 10.1002/anie.202111351. Epub 2021 Nov 3.
The electrochemical CO conversion to formate is a promising approach for reducing CO level and obtaining value-added chemicals, but its partial current density is still insufficient to meet the industrial demands. Herein, we developed a surface-lithium-doped tin (s-SnLi) catalyst by controlled electrochemical lithiation. Density functional theory calculations indicated that the Li dopants introduced electron localization and lattice strains on the Sn surface, thus enhancing both activity and selectivity of the CO electroreduction to formate. The s-SnLi electrocatalyst exhibited one of the best CO -to-formate performances, with a partial current density of -1.0 A cm for producing formate and a corresponding Faradaic efficiency of 92 %. Furthermore, Zn-CO batteries equipped with the s-SnLi catalyst displayed one of the highest power densities of 1.24 mW cm and an outstanding stability of >800 cycles. Our work suggests a promising approach to incorporate electron localization and lattice strain for the catalytic sites to achieve efficient CO -to-formate electrosynthesis toward potential commercialization.
通过电化学方法将一氧化碳转化为甲酸盐是一种降低一氧化碳含量并获得高附加值化学品的很有前景的方法,但其析氢电流密度仍不足以满足工业需求。在此,我们通过可控电化学锂化开发了一种表面锂掺杂的锡(s-SnLi)催化剂。密度泛函理论计算表明,锂掺杂剂在锡表面引入了电子局域化和晶格应变,从而提高了一氧化碳电还原为甲酸盐的活性和选择性。s-SnLi电催化剂展现出了最佳的一氧化碳转化为甲酸盐的性能之一,产甲酸盐的析氢电流密度为-1.0 A cm,相应的法拉第效率为92%。此外,配备s-SnLi催化剂的锌-一氧化碳电池展现出了最高的功率密度之一,为1.24 mW cm,并且具有超过800次循环的出色稳定性。我们的工作提出了一种很有前景的方法,即将电子局域化和晶格应变引入催化位点,以实现高效的一氧化碳到甲酸盐的电合成,朝着潜在的商业化发展。