Lotem Noam, Rasmussen Birger, Zi Jian-Wei, Zeichner Sarah S, Present Theodore M, Bar-On Yinon M, W Fischer Woodward
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125.
School of Earth Sciences, The University of Western Australia, Nedlands, WA 6009, Australia.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2417673121. doi: 10.1073/pnas.2417673121. Epub 2025 Jan 6.
The organic carbon content of ancient rocks provides a fundamental record of the biosphere on early Earth. For over 50 y, the high organic content of Archean (>2.5 Ga) mudrocks has puzzled geologists and evolutionary biologists, because high biological primary productivity was unexpected for the nascent biosphere before the rise of O. Here, we took a different approach to resolve this apparent paradox, by studying the accumulation rates of Archean organic-rich mudrocks. We evaluated the sedimentation rates of three sections of the Mount McRae Shale and Jeerinah Formation (2.68 to 2.48 Ga, Pilbara Craton, Australia) with new and recently published U-Pb zircon ages from intraformational ash beds. For comparison, we compiled Phanerozoic (<500 Ma) data from comparable depositional settings and developed an idealized model that considers the sedimentation rates for predicting rock organic content. We found that organic-rich Archean mudrocks were deposited under exceptionally low sedimentation rates (1 m/Ma), in sharp contrast to organic-rich rocks from the Phanerozoic Eon (10 to 100 m/Ma). Constrained by observations, model results indicated that the Archean data reflect low primary productivity (100-fold lower than during the Phanerozoic) and enhanced preservation under anoxic conditions, with the principal control on organic carbon content provided by dilution with inorganic sediment. Thus, the high organic carbon content which is typically attributed to high productivity instead reflects slow accumulation, high preservation, and minimal inorganic dilution-reconciling the geological evidence with a slow carbon cycle cadence during Archean time.
古代岩石中的有机碳含量为早期地球上的生物圈提供了一份基本记录。五十多年来,太古宙(>25亿年)泥岩的高有机含量一直困扰着地质学家和进化生物学家,因为在氧气出现之前,新生的生物圈出现高生物初级生产力是出人意料的。在此,我们采用了一种不同的方法来解决这一明显的矛盾,即研究太古宙富含有机质泥岩的堆积速率。我们利用来自地层内灰层的新的和最近发表的铀-铅锆石年龄,评估了麦克雷山页岩和杰里纳组(26.8亿至24.8亿年,澳大利亚皮尔巴拉克拉通)三个剖面的沉积速率。为作比较,我们汇编了来自类似沉积环境的显生宙(<5亿年)数据,并建立了一个理想化模型,该模型考虑沉积速率以预测岩石有机含量。我们发现,富含有机质的太古宙泥岩是在极低的沉积速率(约1米/百万年)下沉积的,这与显生宙的富含有机质岩石形成鲜明对比(10至100米/百万年)。受观测结果的约束,模型结果表明,太古宙的数据反映了低初级生产力(比显生宙低约100倍)以及在缺氧条件下保存情况的增强,对有机碳含量的主要控制因素是被无机沉积物稀释。因此,通常归因于高生产力的高有机碳含量反而反映了缓慢的堆积、高保存率以及最小程度的无机稀释——这使得地质证据与太古宙时期缓慢的碳循环节奏相协调。