Siddiqui Ammar Adeel, Tirunagari Santosh, Zia Tehseen, Windridge David
Middlesex University, London, UK.
COMSATS University, Islamabad, Pakistan.
Sci Rep. 2025 Jan 6;15(1):962. doi: 10.1038/s41598-024-81646-x.
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image, in contrast to the more common detection of diseased tissue deployed in standard machine vision pipelines (which are less straightforwardly interpretable/explainable to clinicians). We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models, in order to generate normal counterparts of abnormal images. The discrepancy between the two hence gives rise to a mapping indicating the diagnostically-relevant image components. To achieve this, we deploy image priors in conjunction with appropriate conditioning mechanisms in order to control the image generative process, including natural language text prompts acquired from medical science and applied radiology. We perform experiments and quantitatively evaluate our results on the COVID-19 Radiography Database containing labelled chest X-rays with differing pathologies via the Frechet Inception Distance (FID), Structural Similarity (SSIM) and Multi Scale Structural Similarity Metric (MS-SSIM) metrics obtained between real and generated images. The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction, which are evaluated with real examples from the cheXpert dataset.
医学成像中的视觉归因旨在使医学图像中与诊断相关的成分变得明显,这与标准机器视觉流程中更常见的病变组织检测形成对比(标准机器视觉流程对临床医生来说不太容易解释)。我们在此提出一种新颖的生成式视觉归因技术,该技术利用潜在扩散模型与特定领域的大语言模型相结合,以生成异常图像的正常对应图像。因此,两者之间的差异产生了一个映射,指示与诊断相关的图像成分。为了实现这一点,我们结合适当的条件机制部署图像先验,以控制图像生成过程,包括从医学和应用放射学中获取的自然语言文本提示。我们通过在真实图像和生成图像之间获得的弗雷歇因距离(FID)、结构相似性(SSIM)和多尺度结构相似性度量(MS - SSIM)指标,在包含具有不同病理特征的标记胸部X光片的COVID - 19放射图像数据库上进行实验并对结果进行定量评估。所得到的系统还展现出一系列潜在能力,包括零样本局部疾病诱导,我们使用来自cheXpert数据集的真实示例对其进行了评估。