Suppr超能文献

用于自动化机器学习模型选择的基于渐进采样的贝叶斯优化方法的参数敏感性分析

Parameter Sensitivity Analysis for the Progressive Sampling-Based Bayesian Optimization Method for Automated Machine Learning Model Selection.

作者信息

Zhou Weipeng, Luo Gang

机构信息

University of Washington, Seattle, WA 98195, USA.

出版信息

Heterog Data Manag Polystores Anal Healthc (2020). 2021;12633:213-227. doi: 10.1007/978-3-030-71055-2_17. Epub 2021 Mar 4.

Abstract

As a key component of automating the entire process of applying machine learning to solve real-world problems, automated machine learning model selection is in great need. Many automated methods have been proposed for machine learning model selection, but their inefficiency poses a major problem for handling large data sets. To expedite automated machine learning model selection and lower its resource requirements, we developed a progressive sampling-based Bayesian optimization (PSBO) method to efficiently automate the selection of machine learning algorithms and hyper-parameter values. Our PSBO method showed good performance in our previous tests and has 20 parameters. Each parameter has its own default value and impacts our PSBO method's performance. It is unclear for each of these parameters, how much room for improvement there is over its default value, how sensitive our PSBO method's performance is to it, and what its safe range is. In this paper, we perform a sensitivity analysis of these 20 parameters to answer these questions. Our results show that these parameters' default values work well. There is not much room for improvement over them. Also, each of these parameters has a reasonably large safe range, within which our PSBO method's performance is insensitive to parameter value changes.

摘要

作为将机器学习应用于解决实际问题的整个自动化过程的关键组成部分,自动化机器学习模型选择的需求十分迫切。针对机器学习模型选择,人们已经提出了许多自动化方法,但这些方法效率低下,在处理大数据集时构成了一个主要问题。为了加快自动化机器学习模型选择并降低其资源需求,我们开发了一种基于渐进采样的贝叶斯优化(PSBO)方法,以有效地自动化机器学习算法和超参数值的选择。我们的PSBO方法在之前的测试中表现良好,有20个参数。每个参数都有其默认值,并会影响我们的PSBO方法的性能。对于这些参数中的每一个,尚不清楚其相对于默认值有多大的改进空间、我们的PSBO方法的性能对其有多敏感以及其安全范围是多少。在本文中,我们对这20个参数进行敏感性分析以回答这些问题。我们的结果表明,这些参数的默认值效果良好。相对于它们而言,改进空间不大。此外,这些参数中的每一个都有相当大的安全范围,在该范围内我们的PSBO方法的性能对参数值的变化不敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21bb/7990322/62fc8cf5e787/nihms-1679898-f0001.jpg

相似文献

8
The parameter sensitivity of random forests.随机森林的参数敏感性。
BMC Bioinformatics. 2016 Sep 1;17(1):331. doi: 10.1186/s12859-016-1228-x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验