Suppr超能文献

利用混合导体克服三相界面处的转换反应限制以实现高能量密度固态锂硫电池

Overcoming the conversion reaction limitation at three-phase interfaces using mixed conductors towards energy-dense solid-state Li-S batteries.

作者信息

Wang Daiwei, Gwalani Bharat, Wierzbicki Dominik, Singh Vijay, Jhang Li-Ji, Rojas Tomas, Kou Rong, Liao Meng, Ye Lei, Jiang Heng, Shan Shuhua, Silver Alexander, Ngo Anh T, Du Yonghua, Li Xiaolin, Wang Donghai

机构信息

Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, USA.

Pacific Northwest National Laboratory, Richland, WA, USA.

出版信息

Nat Mater. 2025 Feb;24(2):243-251. doi: 10.1038/s41563-024-02057-x. Epub 2025 Jan 6.

Abstract

Lithium-sulfur (Li-S) all-solid-state batteries (ASSBs) hold great promise for next-generation safe, durable and energy-dense battery technology. However, solid-state sulfur conversion reactions are kinetically sluggish and primarily constrained to the restricted three-phase boundary area of sulfur, carbon and solid electrolytes, making it challenging to achieve high sulfur utilization. Here we develop and implement mixed ionic-electronic conductors (MIECs) in sulfur cathodes to replace conventional solid electrolytes and invoke conversion reactions at sulfur-MIEC interfaces in addition to traditional three-phase boundaries. Microscopic and tomographic analyses reveal the emergence of mixed-conducting domains embedded in sulfur at sulfur-MIEC boundaries, helping promote the thorough conversion of active sulfur into LiS. Consequently, substantially improved active sulfur ratios (up to 87.3%) and conversion degrees (>94%) are achieved in Li-S ASSBs with high discharge capacity (>1,450 mAh g) and long cycle life (>1,000 cycles). The strategy is also applied to enhance the active material utilization of other conversion cathodes.

摘要

锂硫(Li-S)全固态电池(ASSB)在下一代安全、耐用且能量密集型电池技术方面具有巨大潜力。然而,固态硫转化反应动力学缓慢,主要局限于硫、碳和固体电解质受限的三相边界区域,这使得实现高硫利用率具有挑战性。在此,我们在硫阴极中开发并应用混合离子电子导体(MIEC)来替代传统固体电解质,并除了传统三相边界外,还在硫 - MIEC界面引发转化反应。微观和断层扫描分析揭示了在硫 - MIEC边界处硫中嵌入的混合导电域的出现,有助于促进活性硫彻底转化为LiS。因此,在具有高放电容量(>1450 mAh g)和长循环寿命(>1000次循环)的Li-S ASSB中,实现了大幅提高的活性硫比率(高达87.3%)和转化程度(>94%)。该策略还应用于提高其他转化阴极的活性材料利用率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验