Suppr超能文献

可修复和导电的碘化硫用于固态 Li-S 电池。

Healable and conductive sulfur iodide for solid-state Li-S batteries.

机构信息

Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA.

Chemistry Division, Brookhaven National Laboratory, Upton, NY, USA.

出版信息

Nature. 2024 Mar;627(8003):301-305. doi: 10.1038/s41586-024-07101-z. Epub 2024 Mar 6.

Abstract

Solid-state Li-S batteries (SSLSBs) are made of low-cost and abundant materials free of supply chain concerns. Owing to their high theoretical energy densities, they are highly desirable for electric vehicles. However, the development of SSLSBs has been historically plagued by the insulating nature of sulfur and the poor interfacial contacts induced by its large volume change during cycling, impeding charge transfer among different solid components. Here we report an SI molecular crystal with I inserted in the crystalline sulfur structure, which shows a semiconductor-level electrical conductivity (approximately 5.9 × 10 S cm) at 25 °C; an 11-order-of-magnitude increase over sulfur itself. Iodine introduces new states into the band gap of sulfur and promotes the formation of reactive polysulfides during electrochemical cycling. Further, the material features a low melting point of around 65 °C, which enables repairing of damaged interfaces due to cycling by periodical remelting of the cathode material. As a result, an Li-SI battery demonstrates 400 stable cycles with a specific capacity retention of 87%. The design of this conductive, low-melting-point sulfur iodide material represents a substantial advancement in the chemistry of sulfur materials, and opens the door to the practical realization of SSLSBs.

摘要

固态硫锂电池(SSLSBs)由低成本、丰富且无供应链问题的材料制成。由于其具有高理论能量密度,对于电动汽车而言极具吸引力。然而,SSLSBs 的发展长期以来一直受到硫的绝缘性质以及其在循环过程中体积变化导致的不良界面接触的困扰,阻碍了不同固体成分之间的电荷转移。在这里,我们报告了一种具有 I 插入晶体硫结构的 SI 分子晶体,其在 25°C 时表现出半导体级电导率(约 5.9×10^-5 S cm),比硫本身高 11 个数量级。碘在硫的能带隙中引入了新的状态,并在电化学循环过程中促进了反应性多硫化物的形成。此外,该材料的熔点约为 65°C,这使得由于循环而损坏的界面能够通过周期性地重新熔化阴极材料来修复。因此,Li-SI 电池实现了 400 次稳定循环,比容量保持率为 87%。这种导电、低熔点的硫化碘材料的设计代表了硫材料化学的重大进展,为实现实用的 SSLSBs 开辟了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验