Temsaah Hasnaa R, Abdelkader Karim, Ahmed Amr E, Elgiddawy Nada, Eldin Zienab E, Elshebrawy Hend Ali, Kasem Nahed Gomaa, El-Gohary Fatma A, Azmy Ahmed F
Biotechnology and Life Science Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, 62511, Egypt.
Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt.
BMC Biotechnol. 2025 Jan 6;25(1):3. doi: 10.1186/s12896-024-00934-6.
Successful treatment of pathogenic bacteria like Enterobacter Cloacae with bacteriophage (phage) counteract some hindrance such as phage stability and immunological clearance. Our research is focused on the encapsulation of phage HK6 within chitosan nanoparticles.
Encapsulation significantly improves stability, efficacy, and delivery of phages. Chitosan nanoparticles (CS-NPs) achieve a phage entrapment efficiency of 97%. Fourier-transform infrared spectroscopy (FT-IR) reveals shifts towards higher wavenumbers and a new peak, indicating amide bond formation and successful phage encapsulation. The average particle sizes for CS-NP and phage HK6 encapsulated CS-NPs were 180 ± 10 nm and 297 ± 18 nm, respectively. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) analyses reveal that phage HK6 encapsulated CS-NPs are larger on average than CS-NPs, highlighting successful phage encapsulation. Encapsulated bacteriophages maintain its effectiveness at higher pH levels of 11 and 12. Both encapsulated and free bacteriophages are thermostable between 25 and 60 °C; while at higher temperatures (up to 80 °C), the encapsulated phage is thermally stable. Over four days, 70.57% of phages were released from encapsulated CS-NPs. Encapsulation of bacteriophage HK6 in CS-NPs enhances antibacterial activity within the first 2 h, compared to phage or nanoparticles alone.
This suggests that the phage HK6 encapsulated CS-NPs exhibit potentiality as biocontrol agents against resistant microorganisms offering an alternative to phage alone.
用噬菌体成功治疗像阴沟肠杆菌这样的病原菌可克服一些障碍,如噬菌体稳定性和免疫清除。我们的研究重点是将噬菌体HK6包裹在壳聚糖纳米颗粒中。
包裹显著提高了噬菌体的稳定性、效力和递送能力。壳聚糖纳米颗粒(CS-NPs)实现了97%的噬菌体包封率。傅里叶变换红外光谱(FT-IR)显示波数向更高值移动并出现一个新峰,表明形成了酰胺键且噬菌体成功包裹。CS-NP和包裹了噬菌体HK6的CS-NPs的平均粒径分别为180±10纳米和297±18纳米。扫描电子显微镜(SEM)和透射电子显微镜(TEM)分析表明,包裹了噬菌体HK6的CS-NPs平均比CS-NPs更大,突出了噬菌体的成功包裹。包裹的噬菌体在pH值为11和12的较高水平下仍保持其有效性。包裹的和游离的噬菌体在25至60°C之间都是热稳定的;而在更高温度(高达80°C)下,包裹的噬菌体是热稳定的。在四天时间里,70.57%的噬菌体从包裹的CS-NPs中释放出来。与单独的噬菌体或纳米颗粒相比,将噬菌体HK6包裹在CS-NPs中在最初2小时内增强了抗菌活性。
这表明包裹了噬菌体HK6的CS-NPs作为对抗耐药微生物的生物控制剂具有潜力,为单独使用噬菌体提供了一种替代方案。