Duffy Grant, Oikonomou Evan, Hourmozdi Jonathan, Usuku Hiroki, Patel Jigesh, Stern Lily, Goto Shinichi, Tsujita Kenichi, Khera Rohan, Ahmad Faraz S, Ouyang David
Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
Department of Medicine, Yale School of Medicine, New Haven, CT, USA.
medRxiv. 2024 Dec 16:2024.12.14.24319049. doi: 10.1101/2024.12.14.24319049.
Diagnosis of cardiac amyloidosis (CA) is often missed or delayed due to confusion with other causes of increased left ventricular wall thickness. Conventional transthoracic echocardiographic measurements like global longitudinal strain (GLS) has shown promise in distinguishing CA, but with limited specificity. We conducted a study to investigate the performance of a computer vision detection algorithm in across multiple international sites.
EchoNet-LVH is a computer vision deep learning algorithm for the detection of cardiac amyloidosis based on parasternal long axis and apical-4-chamber view videos. We conducted a multi-site retrospective case-control study evaluating EchoNet-LVH's ability to distinguish between the echocardiogram studies of CA patients and controls. We reported discrimination performance with area under the receiver operating characteristic curve (AUC) and associated sensitivity, specificity, and positive predictive value at the pre-specified threshold.
EchoNet-LVH had an AUC of 0.896 (95% CI 0.875 - 0.916). At pre-specified model threshold, EchoNet-LVH had a sensitivity of 0.644 (95% CI 0.601 - 0.685), specificity of 0.988 (0.978 - 0.994), positive predictive value of 0.968 (95% CI 0.944 - 0.984), and negative predictive value of 0.828 (95% CI 0.804 - 0.850). There was minimal heterogeneity in performance by site, race, sex, age, BMI, CA subtype, or ultrasound manufacturer.
EchoNet-LVH can assist with earlier and accurate diagnosis of CA. As CA is a rare disease, EchoNet-LVH is highly specific in order to maximize positive predictive value. Further work will assess whether early diagnosis results in earlier initiation of treatment in this underserved population.
由于与其他导致左心室壁厚度增加的原因相混淆,心脏淀粉样变性(CA)的诊断常常被漏诊或延误。像整体纵向应变(GLS)这样的传统经胸超声心动图测量方法在鉴别CA方面显示出了前景,但特异性有限。我们开展了一项研究,以调查一种计算机视觉检测算法在多个国际站点的表现。
EchoNet-LVH是一种基于胸骨旁长轴和心尖四腔视图视频检测心脏淀粉样变性的计算机视觉深度学习算法。我们进行了一项多站点回顾性病例对照研究,评估EchoNet-LVH区分CA患者和对照者超声心动图研究的能力。我们报告了在预先设定的阈值下,基于受试者工作特征曲线下面积(AUC)的鉴别性能以及相关的敏感性、特异性和阳性预测值。
EchoNet-LVH的AUC为0.896(95%可信区间0.875 - 0.916)。在预先设定的模型阈值下,EchoNet-LVH的敏感性为0.644(95%可信区间0.601 - 0.685),特异性为0.988(0.978 - 0.994),阳性预测值为0.968(95%可信区间0.944 - 0.984),阴性预测值为0.828(95%可信区间0.804 - 0.850)。在不同站点、种族、性别、年龄、体重指数、CA亚型或超声设备制造商之间,性能的异质性极小。
EchoNet-LVH有助于CA的早期准确诊断。由于CA是一种罕见疾病,EchoNet-LVH具有高度特异性,以最大化阳性预测值。进一步的工作将评估早期诊断是否会使这一服务不足人群更早开始治疗。