Suppr超能文献

水交换率衡量神经组织中的主动运输和体内平衡。

Water exchange rates measure active transport and homeostasis in neural tissue.

作者信息

Williamson Nathan H, Ravin Rea, Cai Teddy X, Falgairolle Melanie, O'Donovan Michael J, Basser Peter J

机构信息

National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.

National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA.

出版信息

PNAS Nexus. 2023 Feb 27;2(3):pgad056. doi: 10.1093/pnasnexus/pgad056. eCollection 2023 Mar.

Abstract

For its size, the brain is the most metabolically active organ in the body. Most of its energy demand is used to maintain stable homeostatic physiological conditions. Altered homeostasis and active states are hallmarks of many diseases and disorders. Yet there is currently no direct and reliable method to assess homeostasis and absolute basal activity of cells in the tissue noninvasively without exogenous tracers or contrast agents. We propose a novel low-field, high-gradient diffusion exchange nuclear magnetic resonance (NMR) method capable of directly measuring cellular metabolic activity via the rate constant for water exchange across cell membranes. Exchange rates are s under normal conditions in viable ex vivo neonatal mouse spinal cords. High repeatability across samples suggest that values are absolute and intrinsic to the tissue. Using temperature and drug (ouabain) perturbations, we find that the majority of water exchange is metabolically active and coupled to active transport by the sodium-potassium pump. We show that this water exchange rate is sensitive primarily to tissue homeostasis and provides distinct functional information. In contrast, the apparent diffusion coefficient (ADC) measured with submillisecond diffusion times is sensitive primarily to tissue microstructure but not activity. Water exchange appears independently regulated from microstructural and oxygenation changes reported by ADC and relaxation measurements in an oxygen-glucose deprivation model of stroke; exchange rates remain stable for 30-40 min before dropping to levels similar to the effect of ouabain and never completely recovering when oxygen and glucose are restored.

摘要

就其体积而言,大脑是人体新陈代谢最活跃的器官。其大部分能量需求用于维持稳定的体内平衡生理状态。体内平衡改变和活跃状态是许多疾病和病症的标志。然而,目前尚无直接可靠的方法在不使用外源性示踪剂或造影剂的情况下,非侵入性地评估组织中细胞的体内平衡和绝对基础活性。我们提出了一种新型的低场、高梯度扩散交换核磁共振(NMR)方法,该方法能够通过跨细胞膜的水交换速率常数直接测量细胞代谢活性。在体外存活的新生小鼠脊髓正常条件下,交换速率为 s 。样本间的高重复性表明这些值是组织的绝对固有值。通过温度和药物(哇巴因)扰动,我们发现大部分水交换是代谢活跃的,并且与钠钾泵的主动转运相关。我们表明,这种水交换速率主要对组织体内平衡敏感,并提供独特的功能信息。相比之下,用亚毫秒级扩散时间测量的表观扩散系数(ADC)主要对组织微观结构敏感,而对活性不敏感。在中风的氧糖剥夺模型中,水交换似乎独立于 ADC 和弛豫测量所报告的微观结构及氧合变化进行调节;在氧和葡萄糖恢复之前,交换速率在 30 - 40 分钟内保持稳定,然后降至与哇巴因作用相似的水平,且在氧和葡萄糖恢复后从未完全恢复。

相似文献

2
Real-time measurement of diffusion exchange rate in biological tissue.生物组织中扩散交换率的实时测量。
J Magn Reson. 2020 Aug;317:106782. doi: 10.1016/j.jmr.2020.106782. Epub 2020 Jul 8.
8
Rapid detection of the presence of diffusion exchange.快速检测扩散交换的存在。
J Magn Reson. 2018 Dec;297:17-22. doi: 10.1016/j.jmr.2018.10.004. Epub 2018 Oct 10.

引用本文的文献

本文引用的文献

8
Diffusion time dependence, power-law scaling, and exchange in gray matter.弥散时间依赖性、幂律标度和灰质中的交换。
Neuroimage. 2022 May 1;251:118976. doi: 10.1016/j.neuroimage.2022.118976. Epub 2022 Feb 7.
9
Molecular mechanisms of brain water transport.脑水转运的分子机制。
Nat Rev Neurosci. 2021 Jun;22(6):326-344. doi: 10.1038/s41583-021-00454-8. Epub 2021 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验