Suppr超能文献

使用MAGNUS超高性能梯度进行超高B编码的脑内轴突微结构成像的可行性。

Feasibility of brain intra-axonal microstructure imaging with ultrahigh B-encoding using MAGNUS ultra-high-performance gradients.

作者信息

Abad Nastaren, Bhushan Chitresh, Ajala Afis, Sprenger Tim, Marinelli Luca, Morris H Douglas, DeMarco J Kevin, Hood Maureen, Kohls Gail, Ho Vincent B, Foo Thomas K F

机构信息

GE HealthCare Technology & Innovation Center, Niskayuna, NY, United States.

GE HealthCare, Munich, Germany.

出版信息

Imaging Neurosci (Camb). 2025 Jul 17;3. doi: 10.1162/IMAG.a.68. eCollection 2025.

Abstract

The MAGNUS high-performance MRI gradient platform delivers G = 200-300 mT/m, and SR = 500-750 T/m/s using standard clinical 3.0T system power electronics. This enables the exploration of an expanded diffusion parameter space (b~7-≥30 ms/μm) with reasonable SNR, along with substantially shorter diffusion encoding pulse-widths, echo times, reduced distortion, and blurring from shorter echo spacing. The choice of high b-value diffusion-encoding space can effectively suppress contributions from extra-axonal water, allowing for simplified biophysical models to be explored for non-invasive mapping of intra-axonal content. In this study, the feasibility and reproducibility of mapping whole-brain effective intra-axonal radius ( ), using MAGNUS was assessed. By making use of a test-retest paradigm, reproducibility and sensitivity were evaluated for this new biomarker. Six healthy volunteers were imaged, after obtaining written informed consent, under local IRB-approved protocols with a focus on utilizing the maximum gradient strength of 300 mT/m. Multi-shell dMRI protocols, with a lower bound b = 7 ms/μm were used for feasibility analysis and short (same-day) and long-term (7-days) test-retest repeatability. To aid in increased precision, a framework for rigorous post-processing incorporating real-valued diffusion data handling and gradient non-linearity correction was integrated. At 300 mT/m, simulations highlight a lower bound threshold for robust detectability of >1.41 μm. The simulated distribution function was consistent with measurements, where a mean = 2.75 ± 0.15 μm was observed for whole-brain white matter (WM) across all volunteers. Left-Right brain white matter asymmetry as a function of was noted with segmentations of well-reported parcels, such as the corpus callosum and corticospinal tract, demonstrating good agreement with prior literature. Data highlighted good repeatability in voxel-wise and parcel-based estimates for short- and long-term test-retest analysis. A mean coefficient of variance of 3.2% for WM parcels across all volunteers was noted, with a reproducibility coefficient of 0.16 μm (6.6%) highlighting a lack of systemic bias. This study reports on the feasibility of investigating using MAGNUS. The analysis of repeatability established the floor of changes in the brain that can be observed in studies leveraging as a neuroimaging biomarker for white matter integrity or for investigating neuroplastic processes in the brain.

摘要

MAGNUS高性能MRI梯度平台使用标准临床3.0T系统电力电子设备,可提供200 - 300 mT/m的梯度强度(G)和500 - 750 T/m/s的 slew率(SR)。这使得在合理的信噪比(SNR)下,能够探索扩展的扩散参数空间(b~7 - ≥30 ms/μm),同时显著缩短扩散编码脉冲宽度、回波时间,减少失真以及因较短回波间隔导致的模糊。选择高b值扩散编码空间可以有效抑制轴突外水的贡献,从而能够探索简化的生物物理模型,用于无创映射轴突内成分。在本研究中,评估了使用MAGNUS映射全脑有效轴突内半径( )的可行性和可重复性。通过采用重测范式,对这种新生物标志物的可重复性和敏感性进行了评估。在获得书面知情同意后,按照当地机构审查委员会(IRB)批准的方案,对六名健康志愿者进行成像,重点利用300 mT/m的最大梯度强度。使用下限b = 7 ms/μm的多壳扩散加权磁共振成像(dMRI)方案进行可行性分析以及短期(同一天)和长期(7天)的重测重复性研究。为了提高精度,集成了一个严格的后处理框架,该框架纳入了实值扩散数据处理和梯度非线性校正。在300 mT/m时,模拟结果突出显示了可靠检测的下限阈值为 >1.41 μm。模拟分布函数与 测量结果一致,在所有志愿者的全脑白质(WM)中观察到平均 = 2.75 ± 0.15 μm。通过对胼胝体和皮质脊髓束等报道充分的脑区进行分割,发现左右脑白质不对称性与 有关,这与先前的文献结果高度一致。数据表明,在体素和基于脑区的短期和长期重测分析中具有良好的可重复性。所有志愿者的WM脑区平均变异系数为3.2%,可重复性系数为0.16 μm(6.6%),突出显示了缺乏系统偏差。本研究报告了使用MAGNUS研究 的可行性。重复性分析确定了在将 作为白质完整性的神经影像学生物标志物或用于研究大脑神经可塑性过程的研究中能够观察到的大脑变化下限。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8e9/12330845/11e492756d5e/IMAG.a.68_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验