Tsai Nicole Y, Nimkar Kushal, Zhao Mengya, Lum Matthew R, Yi Yujuan, Garrett Tavita R, Wang Yixiao, Toma Kenichi, Caval-Holme Franklin, Reddy Nikhil, Ehrlich Aliza T, Kriegstein Arnold R, Do Michael Tri H, Sivyer Benjamin, Shekhar Karthik, Duan Xin
Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA.
These authors contributed equally.
bioRxiv. 2024 Dec 17:2024.12.15.628587. doi: 10.1101/2024.12.15.628587.
Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses. To address this gap, we optimized a workflow combining imaging-based spatial transcriptomics (MERFISH) and immunohistochemical co-staining on thin flatmount retinal sections. We used computational methods to register somata distributions of all molecularly defined RGC types. More than 75% (34/45) of types exhibited non-uniform distributions, likely reflecting adaptations of the retina's anatomy to the animal's visual environment. By analyzing the local neighborhoods of each cell, we identified perivascular RGCs located near blood vessels. Seven RGC types are enriched in the perivascular niche, including members of intrinsically photosensitive RGC (ipRGC) and direction-selective RGC (DSGC) subclasses. Orthologous human RGC counterparts of perivascular types - Melanopsin-enriched ipRGCs and ON DSGCs - were also proximal to blood vessels, suggesting their perivascularity may be evolutionarily conserved. Following optic nerve crush in mice, the perivascular M1-ipRGCs and ON DSGCs showed preferential survival, suggesting that proximity to blood vessels may render cell-extrinsic neuroprotection to RGCs through an mTOR-independent mechanism. Overall, our work offers a resource characterizing the spatial profiles of RGC types, enabling future studies of retinal development, physiology, and neurodegeneration at individual neuron type resolution across the two-dimensional space.
多种视网膜神经节细胞(RGCs)将不同的视觉特征从眼睛传递到大脑。最近的研究根据转录组图谱将小鼠的RGCs分为45种类型,显示出与形态学和电生理特性的高度一致性。然而,对于这些类型在二维视网膜表面上的空间排列方式(这种排列会影响视觉编码)以及它们的局部微环境如何影响发育和神经退行性反应,我们却知之甚少。为了填补这一空白,我们优化了一种工作流程,将基于成像的空间转录组学(MERFISH)与薄视网膜平铺切片上的免疫组织化学共染色相结合。我们使用计算方法来记录所有分子定义的RGC类型的胞体分布。超过75%(34/45)的类型呈现出非均匀分布,这可能反映了视网膜解剖结构对动物视觉环境的适应性。通过分析每个细胞的局部邻域,我们确定了位于血管附近的血管周围RGCs。七种RGC类型在血管周围生态位中富集,包括内在光敏RGC(ipRGC)和方向选择性RGC(DSGC)亚类的成员。血管周围类型的直系同源人类RGC对应物——富含黑视蛋白的ipRGCs和ON DSGCs——也靠近血管,这表明它们的血管周围特性可能在进化上是保守的。在小鼠视神经挤压后,血管周围的M1-ipRGCs和ON DSGCs表现出优先存活,这表明靠近血管可能通过一种不依赖mTOR的机制为RGCs提供细胞外神经保护。总体而言,我们的工作提供了一种资源,用于表征RGC类型的空间图谱,从而能够在二维空间中以单个神经元类型分辨率对视网膜发育、生理学和神经退行性变进行未来研究。