Panebianco Christopher J, Essaidi Maha, Barnes Elijah, Williams Ashley, Vancíková Karin, Labberté Margot C, Brama Pieter, Nowlan Niamh C, Boerckel Joel D
Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA.
bioRxiv. 2024 Dec 26:2024.12.26.630423. doi: 10.1101/2024.12.26.630423.
Bones develop to structurally balance strength and mobility. Bone developmental dynamics are influenced by whether an animal is ambulatory at birth (, precocial). Precocial species, such as goats, develop advanced skeletal maturity in utero, making them useful models for studying the dynamics of bone formation under mechanical load. Here, we used microcomputed tomography and histology to characterize postnatal bone development in the autopod of the caprine lower forelimb. The caprine autopod features two toes, fused by metacarpal synostosis (., bone fusion) prior to birth. Our analysis focused on the phalanges 1 (P1) and metacarpals of the goat autopod from birth through adulthood (3.5 years). P1 cortical bone densified rapidly after birth (half-life using one-phase exponential decay model (τ = 1.6 ± 0.4 months), but the P1 cortical thickness increased continually through adulthood (τ = 7.2 ± 2.7 mo). Upon normalization by body mass, the normalized polar moment of inertia of P1 cortical bone was constant over time, suggestive of structural load adaptation. P1 trabecular bone increased in trabecular number (τ = 6.7 ± 2.8 mo) and thickness (τ = 6.6 ± 2.0 mo) until skeletal maturity, while metacarpal trabeculae grew primarily through trabecular thickening (τ = 7.9 ± 2.2 mo). Unlike prenatal fusion of the metacarpal diaphysis, synostosis of the epiphyses occurred postnatally, prior to growth plate closure, through a unique fibrocartilaginous endochondral ossification. These findings implicate ambulatory loading in postnatal bone development of precocial goats and identify a novel postnatal synostosis event in the caprine metacarpal epiphysis.
骨骼发育是为了在结构上平衡强度和灵活性。骨骼发育动态受动物出生时是否能行走(即早成)的影响。早成物种,如山羊,在子宫内就发育出了较高的骨骼成熟度,这使它们成为研究机械负荷下骨形成动态的有用模型。在此,我们使用显微计算机断层扫描和组织学方法来表征山羊前肢下部自足骨出生后至成年期(3.5岁)的骨骼发育情况。山羊自足骨有两个脚趾,在出生前通过掌骨融合(即骨融合)相连。我们的分析集中在山羊自足骨从出生到成年期(3.5岁)的第一指骨(P1)和掌骨。出生后,P1皮质骨迅速致密化(使用单相指数衰减模型的半衰期(τ = 1.6 ± 0.4个月),但P1皮质厚度在成年期持续增加(τ = 7.2 ± 2.7个月)。按体重归一化后,P1皮质骨的归一化极惯性矩随时间保持恒定,提示结构负荷适应。P1小梁骨的小梁数量(τ = 6.7 ± 2.8个月)和厚度(τ = 6.6 ± 2.0个月)在骨骼成熟前增加,而掌骨小梁主要通过小梁增厚生长(τ = 7.9 ± 2.2个月)。与掌骨干的产前融合不同,骨骺融合发生在出生后、生长板闭合之前,通过一种独特的纤维软骨内骨化方式。这些发现表明早成山羊出生后的骨骼发育中存在行走负荷,并确定了山羊掌骨骨骺中一种新的出生后融合事件。