Kanari Lida, Shi Ying, Arnaudon Alexis, Barros-Zulaica Natalí, Benavides-Piccione Ruth, Coggan Jay S, DeFelipe Javier, Hess Kathryn, Mansvelder Huib D, Mertens Eline J, Meystre Julie, de Campos Perin Rodrigo, Pezzoli Maurizio, Daniel Roy Thomas, Stoop Ron, Segev Idan, Markram Henry, de Kock Christiaan P J
Blue Brain Project, École Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, 1202 Geneva, Switzerland.
Laboratorio Cajal de Circuitos Corticales, Universidad Politécnica de Madrid and Instituto Cajal (CSIC), Pozuelo de Alarcón, Madrid 28223, Spain.
bioRxiv. 2024 Dec 18:2023.09.11.557170. doi: 10.1101/2023.09.11.557170.
The organizational principles that distinguish the human brain from other species have been a long-standing enigma in neuroscience. Focusing on the uniquely evolved human cortical layers 2 and 3, we computationally reconstruct the cortical architecture for mice and humans. We show that human pyramidal cells form highly complex networks, demonstrated by the increased number and simplex dimension compared to mice. This is surprising because human pyramidal cells are much sparser in the cortex. We show that the number and size of neurons fail to account for this increased network complexity, suggesting that another morphological property is a key determinant of network connectivity. Topological comparison of dendritic structure reveals much higher perisomatic (basal and oblique) branching density in human pyramidal cells. Using topological tools we quantitatively show that this neuronal structural property directly impacts network complexity, including the formation of a rich subnetwork structure. We conclude that greater dendritic complexity, a defining attribute of human L2 and 3 neurons, may provide the human cortex with enhanced computational capacity and cognitive flexibility.
将人类大脑与其他物种区分开来的组织原则,长期以来一直是神经科学领域的一个谜。我们聚焦于人类独特进化的皮层第2层和第3层,通过计算重建了小鼠和人类的皮层结构。我们发现,与小鼠相比,人类锥体细胞形成了高度复杂的网络,这体现在数量增加和单形维度增大上。这令人惊讶,因为人类锥体细胞在皮层中的分布要稀疏得多。我们发现,神经元的数量和大小并不能解释这种网络复杂性的增加,这表明另一种形态学特性是网络连通性的关键决定因素。对树突结构的拓扑比较显示,人类锥体细胞的胞体周围(基底和斜向)分支密度要高得多。使用拓扑工具,我们定量地表明,这种神经元结构特性直接影响网络复杂性,包括丰富的子网结构的形成。我们得出结论,更高的树突复杂性作为人类第2层和第3层神经元的一个决定性属性,可能为人类皮层提供增强的计算能力和认知灵活性。