Yuan Ying, Biswas Pooja, Zemke Nathan R, Dang Kelsey, Wu Yue, D'Antonio Matteo, Xie Yang, Yang Qian, Dong Keyi, Lau Pik Ki, Li Daofeng, Seng Chad, Bartosik Weronika, Buchanan Justin, Lin Lin, Lancione Ryan, Wang Kangli, Lee Seoyeon, Gibbs Zane, Ecker Joseph, Frazer Kelly, Wang Ting, Preissl Sebastian, Wang Allen, Ayyagari Radha, Ren Bing
Department of Material Science, UC San Diego, La Jolla, CA 92037, USA.
Ophthalmology, Shiley Eye Institute, UC San Diego, La Jolla, CA 92037, USA.
bioRxiv. 2025 Apr 2:2024.12.28.630634. doi: 10.1101/2024.12.28.630634.
Most genetic risk variants linked to ocular diseases are non-protein coding and presumably contribute to disease through dysregulation of gene expression, however, deeper understanding of their mechanisms of action has been impeded by an incomplete annotation of the transcriptional regulatory elements across different retinal cell types. To address this knowledge gap, we carried out single-cell multiomics assays to investigate gene expression, chromatin accessibility, DNA methylome and 3D chromatin architecture in human retina, macula, and retinal pigment epithelium (RPE)/choroid. We identified 420,824 unique candidate regulatory elements and characterized their chromatin states in 23 sub-classes of retinal cells. Comparative analysis of chromatin landscapes between human and mouse retina cells further revealed both evolutionarily conserved and divergent retinal gene-regulatory programs. Leveraging the rapid advancements in deep-learning techniques, we developed sequence-based predictors to interpret non-coding risk variants of retina diseases. Our study establishes retina-wide, single-cell transcriptome, epigenome, and 3D genome atlases, and provides a resource for studying the gene regulatory programs of the human retina and relevant diseases.
大多数与眼部疾病相关的遗传风险变异是非蛋白质编码的,可能通过基因表达失调导致疾病。然而,由于不同视网膜细胞类型中转录调控元件的注释不完整,对其作用机制的深入理解受到了阻碍。为了解决这一知识空白,我们进行了单细胞多组学分析,以研究人类视网膜、黄斑和视网膜色素上皮(RPE)/脉络膜中的基因表达、染色质可及性、DNA甲基化组和三维染色质结构。我们鉴定了420,824个独特的候选调控元件,并在23个视网膜细胞亚类中对其染色质状态进行了表征。对人类和小鼠视网膜细胞之间的染色质景观进行比较分析,进一步揭示了进化上保守和不同的视网膜基因调控程序。利用深度学习技术的快速发展,我们开发了基于序列的预测器来解释视网膜疾病的非编码风险变异。我们的研究建立了全视网膜、单细胞转录组、表观基因组和三维基因组图谱,并为研究人类视网膜的基因调控程序和相关疾病提供了资源。