Suppr超能文献

机器学习在医疗保健临床实践与研究中的应用。

Machine learning applications in healthcare clinical practice and research.

作者信息

Arkoudis Nikolaos-Achilleas, Papadakos Stavros P

机构信息

Research Unit of Radiology and Medical Imaging, School of Medicine, National and Kapodistrian University of Athens, Athens 11528, Greece.

2 Department of Radiology, "Attikon" General University Hospital, Medical School, National and Kapodistrian University of Athens, Chaidari 12462, Greece.

出版信息

World J Clin Cases. 2025 Jan 6;13(1):99744. doi: 10.12998/wjcc.v13.i1.99744.

Abstract

Machine learning (ML) is a type of artificial intelligence that assists computers in the acquisition of knowledge through data analysis, thus creating machines that can complete tasks otherwise requiring human intelligence. Among its various applications, it has proven groundbreaking in healthcare as well, both in clinical practice and research. In this editorial, we succinctly introduce ML applications and present a study, featured in the latest issue of the . The authors of this study conducted an analysis using both multiple linear regression (MLR) and ML methods to investigate the significant factors that may impact the estimated glomerular filtration rate in healthy women with and without non-alcoholic fatty liver disease (NAFLD). Their results implicated age as the most important determining factor in both groups, followed by lactic dehydrogenase, uric acid, forced expiratory volume in one second, and albumin. In addition, for the NAFLD- group, the 5 and 6 most important impact factors were thyroid-stimulating hormone and systolic blood pressure, as compared to plasma calcium and body fat for the NAFLD+ group. However, the study's distinctive contribution lies in its adoption of ML methodologies, showcasing their superiority over traditional statistical approaches (herein MLR), thereby highlighting the potential of ML to represent an invaluable advanced adjunct tool in clinical practice and research.

摘要

机器学习(ML)是人工智能的一种类型,它通过数据分析帮助计算机获取知识,从而创造出能够完成原本需要人类智能才能完成的任务的机器。在其众多应用中,它在医疗保健领域的临床实践和研究中也被证明具有开创性。在这篇社论中,我们简要介绍了机器学习的应用,并展示了发表在最新一期[期刊名称未给出]上的一项研究。该研究的作者使用多元线性回归(MLR)和机器学习方法进行了分析,以调查可能影响患有和未患有非酒精性脂肪性肝病(NAFLD)的健康女性的估计肾小球滤过率的重要因素。他们的结果表明,年龄是两组中最重要的决定因素,其次是乳酸脱氢酶、尿酸、一秒用力呼气量和白蛋白。此外,对于非NAFLD组,第5和第6重要的影响因素是促甲状腺激素和收缩压,而对于NAFLD+组,是血浆钙和体脂。然而,该研究的独特贡献在于采用了机器学习方法,展示了其相对于传统统计方法(此处指MLR)的优越性,从而突出了机器学习在临床实践和研究中作为一种非常有价值的先进辅助工具的潜力。

相似文献

1
Machine learning applications in healthcare clinical practice and research.
World J Clin Cases. 2025 Jan 6;13(1):99744. doi: 10.12998/wjcc.v13.i1.99744.
3
Application of artificial intelligence techniques for non-alcoholic fatty liver disease diagnosis: A systematic review (2005-2023).
Comput Methods Programs Biomed. 2024 Feb;244:107932. doi: 10.1016/j.cmpb.2023.107932. Epub 2023 Nov 22.
5
Applications of artificial intelligence (AI) in researches on non-alcoholic fatty liver disease(NAFLD) : A systematic review.
Rev Endocr Metab Disord. 2022 Jun;23(3):387-400. doi: 10.1007/s11154-021-09681-x. Epub 2021 Aug 15.
7
Artificial intelligence model with deep learning in nonalcoholic fatty liver disease diagnosis: genetic based artificial neural networks.
Nucleosides Nucleotides Nucleic Acids. 2023;42(5):398-406. doi: 10.1080/15257770.2022.2152046. Epub 2022 Nov 30.
9
Metabolic signatures across the full spectrum of non-alcoholic fatty liver disease.
JHEP Rep. 2022 Mar 26;4(5):100477. doi: 10.1016/j.jhepr.2022.100477. eCollection 2022 May.
10
Non-Alcoholic Fatty Liver Disease: Implementing Complete Automated Diagnosis and Staging. A Systematic Review.
Diagnostics (Basel). 2021 Jun 12;11(6):1078. doi: 10.3390/diagnostics11061078.

引用本文的文献

本文引用的文献

2
Applications of artificial intelligence and machine learning in the financial services industry: A bibliometric review.
Heliyon. 2023 Dec 13;10(1):e23492. doi: 10.1016/j.heliyon.2023.e23492. eCollection 2024 Jan 15.
3
Harnessing artificial intelligence to improve clinical trial design.
Commun Med (Lond). 2023 Dec 21;3(1):191. doi: 10.1038/s43856-023-00425-3.
5
Revolutionizing healthcare: the role of artificial intelligence in clinical practice.
BMC Med Educ. 2023 Sep 22;23(1):689. doi: 10.1186/s12909-023-04698-z.
6
Current trends on the application of artificial intelligence in medical sciences.
Bioinformation. 2022 Nov 30;18(11):1050-1061. doi: 10.6026/973206300181050. eCollection 2022.
10
Artificial intelligence meets medical robotics.
Science. 2023 Jul 14;381(6654):141-146. doi: 10.1126/science.adj3312. Epub 2023 Jul 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验